首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating fine particulate matter component concentrations and size distributions using satellite-retrieved fractional aerosol optical depth: part 2--a case study
Authors:Liu Yang  Koutrakis Petros  Kahn Ralph  Turquety Solene  Yantosca Robert M
Affiliation:Harvard School of Public Health, Boston, MA 02215, USA. yangliu@hsph.harvard.edu
Abstract:We use the fractional aerosol optical depth (AOD) values derived from Multiangle Imaging Spectroradiometer (MISR) aerosol component measurements, along with aerosol transport model constraints, to estimate ground-level concentrations of fine particulate matter (PM2.5) mass and its major constituents in the continental United States. Regression models using fractional AODs predict PM2.5 mass and sulfate (SO4) concentrations in both the eastern and western United States, and nitrate (NO3) concentrations in the western United States reasonably well, compared with the available ground-level U.S. Environment Protection Agency (EPA) measurements. These models show substantially improved predictive power when compared with similar models using total-column AOD as a single predictor, especially in the western United States. The relative contributions of the MISR aerosol components in these regression models are used to estimate size distributions of EPA PM2.5 species. This method captures the overall shapes of the size distributions of PM2.5 mass and SO4 particles in the east and west, and NO3 particles in the west. However, the estimated PM2.5 and SO4 mode diameters are smaller than those previously reported by monitoring studies conducted at ground level. This is likely due to the satellite sampling bias caused by the inability to retrieve aerosols through cloud cover, and the impact of particle hygroscopicity on measured particle size distributions at ground level.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号