摘 要: | 目的 针对飞行器结构壁板损伤疲劳问题进行研究,提高对声疲劳损伤的智能识别能力。方法 构建一种基于梯度提升决策树(GBDT)的高效智能识别模型,用于识别飞行器结构壁板的声疲劳损伤。该方法依赖于GBDT模型的强大性能,能够有效处理复杂的非线性关系,并通过迭代学习不断优化识别结果。基于某复合材料结构壁板噪声实测数据,构建时间、速度、标签数据集进行模型验证。结果 基于GBDT的噪声疲劳损伤智能识别准确率为76.8%。结论 基于GBDT的声疲劳损伤智能识别方法具有良好的识别能力,能够在实际应用中对飞行器结构壁板的声疲劳损伤进行有效监测,验证了该方法的有效性和实用性。
|