首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: analysis of the influence of the operating conditions using the response surface methodology
Authors:Mahmoud Akrama  Fernandez Aurora  Chituchi Toma-Mihai  Arlabosse Patricia
Institution:RAPSODEE CENTRE (UMR CNRS 2392), Ecole des Mines d'Albi-Carmaux, Campus Jarlard, 81013 Albi CT Cedex 09, France.
Abstract:Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (temperature <100 degrees C and pressure <3000 kPa) constitutes an original approach and a significant energy saving since the liquid is kept in liquid state. Response surface methodology was used to evaluate the effects of the processing parameters of TAMD on the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of TAMD. In this study, a two-factor central composite rotatable design was used to establish the optimum conditions for the TAMD of suspensions of fine particles. Significant regression models, describing changes on final dry solids content with respect to independent variables, were established with regression coefficients (usually called determination coefficients), R(2), greater than 80%. Experiments were carried out on a laboratory filtration/compression cell, firstly on different compressible materials: synthetic mineral suspensions such as talc and synthetic organic suspensions such as cellulose, and then on industrial materials, such as bentonite sludge provided by Soletanche Bachy Company. Experiment showed that the extent of TAMD for a given material is particularly dependent on their physical and chemical properties but also on processing parameters.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号