首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improvement of integrity management for pressure vessels based on risk assessment - A natural gas separator case study
Institution:1. Petroleum Engineering School, Southwest Petroleum University, China;2. Gas Management Department, PetroChina Southwest Oil and Gas Field Branch Company, China;1. Mexican Institute of Transportation, Transportation and Logistics Systems National Laboratory, Carretera Querétaro-Galindo Km 12, Sanfandila, Mpio. Pedro Escobedo, C.P. 76703 Queretaro, Mexico;2. YoLogistico.COM, Francisco P. Mariel No. 155, C.P. 78233 San Luis Potosí, Mexico;1. CAIMI Centro de Aplicaciones Informáticas y Modelado en Ingeniería, Universidad Tecnológica Nacional, Facultad Regional Rosario, Zeballos, 1346, S2000BQA, Rosario, Argentina;2. CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Blvd. 27 de Febrero 210 Bis, S2000EZP, Rosario, Argentina;1. Université de Toulouse, INSA, UPS, Mines d’Albi, ISAE, ICA (Institut Clément Ader), 135 Avenue de Rangueil, Cedex, 31077, Toulouse, France;2. Defence Technology Institute, 47/433 Moo 3, Ban Mai, Pak Kret, Nonthaburi, 11120, Thailand;3. Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi, 20131, Thailand
Abstract:The process of oil and gas processing plant is complex, the types of pressure vessels are rich, and the functions are critical. However, the working medium is mostly untreated medium, and the hazard factors are complex, which poses a threat to the safe production of oil and gas processing plant. Based on PDCA cycle, this paper establishes a six-step links of integrity management for sustainable improvement of pressure vessels. The typical failure modes of pressure vessels are determined, and the fishbone diagram of risk factors under each failure mode is compiled. Risk quantification and classification of pressure vessels based on failure modes (RBFM) is innovatively proposed. Avoiding incalculable failure frequency index, the process quantification of failure possibility is formed according to the development of hazard factors. A failure consequence calculation model based on the leakage affected area was established. Combined with the failure probability level and risk level, the hierarchical inspection strategy for pressure vessels under different failure modes is established. Finally, the method is applied to the natural gas separator of H processing plant. The research results show that RBFM proposed in this paper can meet the requirements for rapid and accurate risk assessment of pressure vessels in oil and gas processing plant. This paper establishes a safe production barrier for the pressure vessel and improves the intrinsic safety of the equipment.
Keywords:Pressure vessel  Integrity management  Risk assessment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号