首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characteristics of dust explosion venting pressure and flame under high activation pressure
Institution:1. College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China;2. College of Safety Engineering, China University of Labor Relations, Beijing, 100048, PR China;3. Process Safety and Disaster Prevention Laboratory, National Yunlin University of Science and Technology, Douliou, Yunlin, 64002, Taiwan;1. Université de Lorraine, CNRS, LRGP, Nancy, France;2. INERIS, Parc Technologique ALATA, BP 2, F-60550, Verneuil-en-Halatte, France;1. College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, Henan, PR China;2. State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, Henan, PR China;3. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo, 454003, Henan, PR China;1. College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China;2. Saifeite Engineering Group Co. Ltd., Qingdao, 266061, China;3. Department of Safety, Health, And Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
Abstract:A 20 L spherical explosive device with a venting diameter of 110 mm was used to study the vented pressure and flame propagation characteristics of corn dust explosion with an activation pressure of 0.78–2.1 bar and a dust concentration of 400~900 g/m3. And the formation and prevention of secondary vented flame are analyzed and discussed. The results show that the maximum reduced explosion overpressure increases with the activation pressure, and the vented flame length and propagation speed increase first and then decrease with time. The pressure and flame venting process models are established, and the region where the secondary flame occurs is predicted. Whether there is pressure accompanying or not in the venting process, the flame venting process is divided into two stages: overpressure venting and normal pressure venting. In the overpressure venting stage, the flame shape gradually changes from under-expanded jet flame to turbulent jet flame. In the normal pressure venting stage, the flame form is a turbulent combustion flame, and a secondary flame occurs under certain conditions. The bleed flames within the test range are divided into three regions and four types according to the shape of the flame and whether there is a secondary flame. The analysis found that when the activation pressure is 0.78 bar and the dust concentration is less than 500 g/m3, there will be no secondary flame. Therefore, to prevent secondary flames, it is necessary to reduce the activation pressure and dust concentration. When the dust concentration is greater than 600 g/m3, the critical dust concentration of the secondary flame gradually increases with the increase of the activation pressure. Therefore, when the dust concentration is not controllable, a higher activation pressure can be selected based on comprehensive consideration of the activation pressure and destruction pressure of the device to prevent the occurrence of the secondary flame.
Keywords:Dust explosion  Dust venting  Secondary flame  Activative pressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号