首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lithium ion battery energy storage systems (BESS) hazards
Institution:1. RISE Research Institutes of Sweden, Box 857, 501 15 Borås, Sweden;2. Department of Chemistry - Ångström Laboratory, Uppsala University, Box 358, 751 21 Uppsala, Sweden;1. Department of Engineering, University of Perugia, Via G. Duranti 93, Perugia 06125, Italy;2. VGA srl, Via Ugo Foscolo, 1, Deruta 06053, Italy
Abstract:There has been an increase in the development and deployment of battery energy storage systems (BESS) in recent years. In particular, BESS using lithium-ion batteries have been prevalent, which is mainly due to their power density, performance, and economical aspects. BESS have been increasingly used in residential, commercial, industrial, and utility applications for peak shaving or grid support. As the number of installed systems is increasing, the industry has also been observing more field failures that resulted in fires and explosions. Lithium-ion batteries contain flammable electrolytes, which can create unique hazards when the battery cell becomes compromised and enters thermal runaway. The initiating event is frequently a short circuit which may be a result of overcharging, overheating, or mechanical abuse. During the exothermic reaction process (i.e., thermal runaway), large amounts of flammable and potentially toxic battery gas will be generated. The released gas largely contains hydrogen, which is highly flammable under a wide range of conditions. This may create an explosive atmosphere in the battery room or storage container. As a result, a number of the recent incidents resulted in significant consequences highlighting the difficulties on how to safely deal with the hazard. This paper identifies fire and explosion hazards that exist in commercial/industrial BESS applications and presents mitigation measures. Common threats, barriers, and consequences are conceptually shown and how they would be identified in a hazard mitigation analysis (HMA). Mitigation measures that can be implemented to reduce the risk of a fire or an explosion are discussed. The presented information is intended to provide practical information to professionals and authorities in this fairly new industry to assure that prevention and mitigation strategies can be effectively implemented and that the regulatory requirement of the HMA can be met.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号