首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst
Authors:Junjian An  Lihua Zhu  Yingying Zhang and Heqing Tang
Institution:1. College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
Abstract:The visible light photo-Fenton-like catalytic performance of BiFeO3 nanoparticles was investigated using Methyl Violet (MV), Rhodamine B (RhB) and phenol as probes. Under optimum conditions, the pseudo first-order rate constant (k) was determined to be 2.21 × 10−2, 5.56 × 10−2 and 2.01 × 10−2 min−1 for the degradation of MV (30 μmol/L), RhB (10 μmol/L) and phenol (3 mmol/L), respectively, in the BiFeO3-H2O2-visible light (Vis) system. The introduction of visible light irradiation increased the k values of MV, RhB and phenol degradation 3.47, 1.95 and 2.07 times in comparison with those in dark. Generally, the k values in the BiFeO3-H2O2-Vis system were accelerated by increasing BiFeO3 load and H2O2 concentration, but decreased with increasing initial pollutant concentration. To further enhance the degradation of pollutants at high concentrations, BiFeO3 was modified with the addition of surface modifiers. The addition of ethylenediamineteraacetic acid (EDTA, 0.4 mmol/L) increased the k value of MV degradation (60 μmol/L) from 1.01 × 10−2 min−1 in the BiFeO3-H2O2-Vis system to 1.30 min-1 in the EDTA-BiFeO3-H2O2-Vis system by a factor of 128. This suggests that in situ surface modification can enable BiFeO3 nano-particles to be a promising visible light photo-Fenton-like catalyst for the degradation of organic pollutants.
Keywords:nanoscale BiFeO3  visible light  photo-Fenton-like catalysis  degradation  surface modification
本文献已被 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号