Abstract: | ABSTRACT: This paper describes the integration of a comprehensive hydrological model known as the Hydrological Simulation Program Fortran (HSPF) into a problem solving environment (PSE) for watershed management. The original PSE concept was a structure providing web‐based access to a suite of models, including HSPF and other models of in‐stream hydrodynamics, biological impacts and economic effects, for the watershed‐wide assessment of alternative land use scenarios. The present paper describes only the HSPF integration into the PSE program. Example applications to the 148 square kilometer (57 square mile) Back Creek subwatershed in the upper Roanoke River system (1,479 square kilometers or 571 square miles) in southwest Virginia are used to illustrate important concepts and linkages between land development and hydrological change using hypothetical' what if'scenarios. The features of HSPF and its limitations in this context are discussed. The paper as such is a proof‐of‐concept paper and not a completion report. It is intended to describe the PSE tool building process rather than analysis of the many possible simulation outcomes. However, the dominance of raw imperviousness as a contributor to hydrograph response is apparent in all the PSE simulations described in this paper. |