首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oil spreading in instantaneous and continuous spills on rotating earth
Authors:Vladimir Maderich  Igor Brovchenko  Kyung Tae Jung
Institution:1. Institute of Mathematical Machine and System Problems, Kiev, Ukraine
2. Korea Ocean Research and Development Institute, Ansan, Republic of Korea
Abstract:The effect of the Coriolis force on the oil spill spreading in the gravity-viscous regime is examined. A new shallow water model for the transport and spreading of oil slick of arbitrary shape is described in which the Coriolis force is included in the momentum equations and the oil–water friction is parameterized in a frame of the boundary layer theory including the Ekman friction. The numerical Lagrangian method based on smoothed particle dynamics is described. New similarity solutions of the model equations are obtained for unidirectional and axisymmetric spreading in gravity-viscous, gravity-turbulent and gravity-viscous-rotational regimes for instantaneous as well as continuous releases. The numerical simulation extends these results for the case of continuous release in the presence of currents. It was shown that Coriolis term in the momentum equation can be omitted if slick thickness is much less of the laminar Ekman layer thickness. However, the Ekman friction should be retained for slicks of any thickness for larger times. The Ekman friction results in the essential slowdown of the spreading as well as in the deflection of the oil spreading velocity at 45° from the direction of velocity in the non-rotation case. Numerical simulations of large-scale spills showed that after the 2?days the slick area with the Coriolis effect was approximately less than half of that without rotation. Therefore, the earth rotation can be also important in the oil weathering.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号