首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metallothioneins and lysosomes in metal toxicity and accumulation in marine mussels: the effect of cadmium in the presence and absence of phenanthrene
Authors:A Viarengo  M N Moore  G Mancinelli  A Mazzucotelli  R K Pipe  S V Farrar
Institution:(1) Istituto di Fisiologia Generale, Università di Genova, I-16132 Genova, Italy;(2) Institute for Marine Environmental Research, Natural Environment Research Council, Prospect Place, The Hoe, Plymouth, UK;(3) Istituto di Chimica Generale, Università di Genova, I-16132 Genova, Italy
Abstract:It has been confirmed that metallothioneins play an important role in the accumulation of cadmium (Cd) in the digestive gland cells of mussels (Mytilus galloprovincialis Lam.). The content of Cd in the tissue of mussels exposed for 9 d to the metal (estimated dosage of 180 mgrg Cd mussel-1 d-1) was 66.2 ppm. This value is about the same as the metal content found in the digestive gland of Cd-exposed mussels kept in clean water for a recovery period of 28 d. At the end of the recovery period, however, the Cd bound to thionein had increased by approximately 250%. Our data demonstrate that the stability of lysosomes, a biological parameter adopted as a cellular stress index, is extremely low in mussels exposed to Cd for 9 d, but returns to control values in the digestive gland cells of mussels allowed to recover for 28 d in uncontaminated sea water. At this point most of the Cd present in the cytosol is bound to thionein. These data demonstrate the importance of metallothionein induction in the reduction of the cytotoxic effects exerted by high levels of Cd accumulation. The results of tests designed to clarify the reasons for the long biological half-life of Cd demonstrated that, in the digestive gland of mussels, the lysosomes are not able to eliminate Cd either bound to insoluble thionein polymers or to lipid peroxidation products such as lysosomal lipofuscin, both of which are apparently involved in the elimination of copper. The absence of these two mechanisms of metal sequestration and elimination via excretion of residual bodies (tertiary lysosomes) is in agreement with the persistence of cadmium in the digestive gland of mussels. Finally, the results also demonstrate that simultaneous exposure of mussels to Cd and phenanthrene, an established lysosomal membrane destabilizer, did not significantly alter the accumulation of Cd or the kinetics of the metal in mussels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号