首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Depth zonation and metabolic adaptation in Dover sole,Microstomus pacificus,and other deep-living flatfishes: factors that affect the sole
Authors:R D Vetter  E A Lynn  M Garza  A S Costa
Institution:(1) National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, 92038 La Jolla, California, USA
Abstract:Flatfishes of Monterey Bay, central California, undergo species replacements with increasing depth along a transect from 100 m on the continental shelf down to a depth of 1400 m on the continental slope. The Dover sole, Microstomus pacificus, differs from the other local flatfish species by undergoing an extensive ontogenetic vertical migration, occupying all depth zones at different life stages, and having its maximum spawning biomass in the oxygen minimum zone between 600 and 1000 m. Size-activity relationships and depth-activity relationships for the glycolytic enzyme lactate dehydrogenase (LDH) and for two enzymes associated with aerobic metabolism, malate dehydrogenase and citrate synthase (CS), were examined in white-muscle tissue of shallow-living, deep-living and ontogenetically-migrating species. Scaling coefficients (b) for weight-specific enzyme activity (log activity)=a+b (log wet weight), varied in sign as well as magnitude for fishes living at different depths. In the shallow-living California halibut Paralichthys californicus, LDH scaled positively (0.39) and CS scaled negatively (-0.15) with size, a pattern observed previously for most shallow-water fish species. The permanently deep-living species, the deepsea sole Embassichthys bathybius, differed in that both LDH and CS scaled strongly negative (-2.0 and-1.5, respectively). For the ontogenetically migrating Dover sole Microstomus pacificus, there was a shelf-slope transition. For the shelf specimens (le200 m), LDH scaled positive (0.11) and CS negative (-0.29) and for the slope specimens (ge400 m), LDH scaled negative (-0.65) and CS strongly negative (-0.63). Rex sole, Glyptocephalus zachirus, showed a similar shelf-slope transition. Intraspecific depth-enzyme activity differences were not incremental, but changed abruptly between the continental shelf stations (100 to 200 m) and the continental slope (400 to 1400 m). Based on comparisons with laboratory-maintained individuals, the decline in the metabolic capacity of the white muscle of Dover sole is a phenotypic response to the low food and oxygen conditions of the continental slope. Contrary to expectation, anaerobic capacity (LDH activity) decreased in response to low oxygen conditions, suggesting that in a permanently hypoxic environment such as the oxygen minimum zone the metabolic strategy may be to not incur an oxygen debt that would be difficult to pay back.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号