Applications of dust explosion hazard and disaster prevention technology |
| |
Affiliation: | 1. School of Chemical Machinery and Safety Engineering, Dalian University of Technology, Dalian 116024, PR China;2. Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan;3. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230027, PR China;4. School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China |
| |
Abstract: | Powdered materials are widely used in industrial processes, chemical processing, and nanoscience. Because most flammable powders and chemicals are not pure substances, their flammability and self-heating characteristics cannot be accurately identified using safety data sheets. Therefore, site staff can easily underestimate the risks they pose. Flammable dust accidents are frequent and force industrial process managers to pay attention to the characteristics of flammable powders and create inherently safer designs.This study verified that although the flammable powders used by petrochemical plants have been tested, some powders have different minimum ignition energies (MIEs) before and after drying, whereas some of the powders are released of flammable gases. These hazard characteristics are usually neglected, leading to the neglect of preventive parameters for fires and explosions, such as dust particle size specified by NFPA-654, MIE, the minimum ignition temperature of the dust cloud, the minimum ignition temperature of the dust layer, and limiting oxygen concentration. Unless these parameters are fully integrated into process hazard analysis and process safety management, the risks cannot be fully identified, and the reliability of process hazard analysis cannot be improved to facilitate the development of appropriate countermeasures. Preventing the underestimation of process risk severity due to the fire and explosion parameters of unknown flammable dusts and overestimation of existing safety measures is crucial for effective accident prevention. |
| |
Keywords: | Inherently safer design Minimum ignition energy Minimum ignition temperature of the dust cloud Minimum ignition temperature of the dust layer Limiting oxygen concentration |
本文献已被 ScienceDirect 等数据库收录! |
|