首页 | 本学科首页   官方微博 | 高级检索  
     检索      

不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究
引用本文:毛欣宇,翟森茂,姜小三,孙晶晶,于怀志.不同改性生物炭对农田土壤理化性质及铅、镉钝化的影响机制研究[J].环境工程,2023,41(2):113-121+139.
作者姓名:毛欣宇  翟森茂  姜小三  孙晶晶  于怀志
作者单位:1. 河海大学 农业科学与工程学院, 南京 211000;
基金项目:中央高校基本科研业务费项目(2019B08514)泰州市科技支撑计划(农业)项目(SNY20208551,SNY20208534)国家自然科学基金青年项目(51809076)
摘    要:改性生物炭是良好的重金属钝化剂。但针对不同生物炭,联合多种方法进行改性后生物炭的吸附性能尚待深入研究,其对土壤理化性质和重金属铅(Pb)、镉(Cd)长期钝化效果的影响也有待研究。选取水稻秸秆、木屑和椰壳为生物炭材,经硝酸-高锰酸钾联合改性后进行表征,明确改性前后生物炭理化性质。开展室内培养实验,将改性生物炭按质量比为2.5%、5%和10%加入受试土壤,培养6个月后,测定土壤理化性质、Pb、Cd形态分布及钝化效率,探讨改性生物炭钝化土壤Pb、Cd的作用机制。结果表明:改性后,不同生物炭的比表面积、孔隙结构和含氧官能团数量均得到不同程度的改善,重金属吸附性能有效增强,以改性椰壳炭最为显著。添加改性生物炭能提高土壤pH并改善土壤结构,当其用量>5%时,土壤阳离子交换量和有机质含量分别提高了15.89 g/kg和5.28 cmol/kg,土壤自身对养分及重金属的固定能力得到了显著提升。改性生物炭-土壤体系主要通过离子交换、络合反应和共沉淀反应等促使土壤有效态Pb、Cd向其潜在活化形态和残渣态转化,转化程度与钝化培养时间和改性生物炭用量呈正相关。受元素特性和竞争吸附作用的影响,土壤Pb

关 键 词:改性生物炭      土壤理化性质  钝化
收稿时间:2021-11-26

EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS
Institution:1. College of Agricultural Science and Engineering, Hohai University, Nanjing 211000, China;2. Taizhou Research Institute of Nanjing Agricultural University, Taizhou 225300, China
Abstract:Biochar, modified through acidification, alkalization or organification method, has been widely applied as an adsorbent for heavy metal immobilization. However, there is still a lack of information about the modification methods for improving the adsorption ability of biochar made from different raw materials. In addition, as a soil amendment, the influences and mechanisms of modified biochar in improving soil physico-chemical properties and stabilizing soil Pb and Cd also need further exploration. In this study, rice straw, sawdust and coconut shell were selected as the raw materials for the preparation of biochar. After modification by nitric acid and potassium permanganate, the surface characteristics of modified biochar such as specific surface area, pore structure and surface functional groups were measured. After then, the modified biochar was added into the tested soil (1000 mg/kg Pb, 10 mg/kg Cd) with a mass ratio of 2.5%, 5% and 10% respectively for 6 months of indoor immobilization test. Soil physico-chemical properties, speciation distribution of soil Pb and Cd and the relevant immobilization efficiency were measured at the end of the experiment. The results showed that, after modification, the specific surface area, micropore and oxygen-containing functional groups of different biochar were increased to varying degrees, which effectively enhanced the adsorption ability of biochar, especially for the modified coconut shell biochar. When the dosage of modified biochar was larger than 5%, the soil cation exchange capacity and organic matter content were observed increased by 15.89 g/kg and 5.28 cmol/kg respectively, which improved the fixation of soil nutrients and heavy metals. The modified biochar-soil system mainly promoted the transformation of soil available Pb and Cd to their potential activated and residual forms through ion exchange, complexation reaction and co-precipitation reaction. The degree of transformation was positively correlated with the immobilization time and dosage of modified biochar. Compared with Cd2+, Pb2+ in soil could be preferentially adsorbed and gradually reached adsorption equilibrium within 2 months due to the effect of competitive adsorption. The immobilization effect of modified coconut shell biochar on soil Pb and Cd was optimal with a dosage of 10%, and the highest immobilization rate was found as 59.72% and 36.37% respectively. In addition, continuous increases of soil cation exchange capacity and organic matter content were observed during the experiment, which might be caused by the "ageing effect" of biochar. Influenced by such effect, the bioavailability of Pb and Cd in soil kept decreasing and no secondary release of Pb2+ and Cd2+ were detected. In conclusion, the addition of modified biochar can improve soil structure, enhance soil fertility, and effectively stabilize soil Pb and Cd over a long time, and could be used in remediation of heavy metal contaminated soil.
Keywords:
点击此处可从《环境工程》浏览原始摘要信息
点击此处可从《环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号