首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms behind the accelerated extracellular electron transfer in Geobacter sulfurreducens DL-1 by modifying gold electrode with self-assembled monolayers
Authors:Feng Zhang  Shengsong Yu  Jie Li  Wenwei Li  Hanqing Yu
Affiliation:1.CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry,University of Science & Technology of China,Hefei,China
Abstract:Modification of electrode surface with carboxylic acid terminated alkanethiol self-assembled monolayers (SAMs) has been found to be an effective approach to improve the extracellular electron transfer (EET) of electrochemically active bacteria (EAB) on electrode surface, but the underlying mechanism behind such enhanced EET remains unclear. In this work, the gold electrodes modified by mercapto-acetic acid and mercaptoethylamine (Au-COOH, Au-NH2) were used as anodes in microbial electrolysis cells (MECs) inoculated with Geobacter sulfurreducens DL-1, and their electrochemical performance and the bacteria-electrode interactions were investigated. Results showed that the Fe(CN) 6 3–/4– redox reaction occurred on the Au-NH2 with a higher rate and a lower resistance than that on the Au or the Au-COOH. Both the MECs with the Au-COOH and Au-NH2 anodes exhibited a higher current density than that with a bare Au anode. The biofilm formed on the Au-COOH was denser than that on bare Au, while the biofilm on the Au-NH2 had a greater thickness, suggesting a critical role of direct EET in this system. This work suggests that functional groups such as–COOH and-NH2 could promote electrode performance by accelerating the direct EET of EAB on electrode surface.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号