首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林模型的中国近地面NO2浓度估算
引用本文:游介文,邹滨,赵秀阁,许珊,何瑞. 基于随机森林模型的中国近地面NO2浓度估算[J]. 中国环境科学, 2019, 39(3): 969-979
作者姓名:游介文  邹滨  赵秀阁  许珊  何瑞
作者单位:1. 中南大学地球科学与信息物理学院, 湖南 长沙 410083;2. 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京 100012
基金项目:国家重点研发计划项目(2016YFC0206205);国家自然科学基金资助项目(41871317);中南大学创新驱动计划(20170019010005)
摘    要:
NH3针对传统近地面NO2浓度空间模拟过程中NO2浓度与其影响要素之间关系的复杂非线性机制解释不充分的缺陷,本研究基于随机森林(RF)算法、融合多源地理要素开展了近地面NO2浓度空间分布模拟研究.以卫星OMI对流层NO2柱浓度数据和多源地理要素(道路交通、气象因子、土地利用/覆盖、地形高程、人口数量)为输入变量,近地面NO2浓度为输出变量,利用RF算法构建近地面NO2浓度反演模型.通过对比地面观测数据与传统土地利用回归模型(LUR)检验RF模型的有效性,基于所构建的最优RF模型在不同时间尺度下模拟分析中国大陆地区近地面NO2浓度空间分布特征.结果表明:(1)集成多源地理要素的RF回归模型精度高,月均模型整体拟合度R2 0.85,RMSE 6.08μg/m3,交叉验证的R2 0.84,RMSE 6.33μg/m3,显著高于LUR模型(拟合R2 0.53,RMSE 10.48μg/m3,交叉验证的R2 0.53,RMSE 10.49μg/m3); (2)地面NO2浓度与预测变量呈现显著的复杂非线性与时间尺度依赖关系,卫星OMI柱浓度对模型影响程度最大,重要性指标IncMSE介于97.40%~116.54%,多源地理特征变量对RF模型同样具有不可忽视的贡献力(IncMSE在23.34%~47.53%之间);(3)中国大陆地区NO2污染程度较高,年均模拟浓度为24.67μg/m3,存在明显季节性空间差异,NO2浓度冬季(31.85μg/m3) > 秋季(24.86μg/m3) > 春季(23.24μg/m3) > 夏季(18.75μg/m3),呈现以华北平原为高值中心、向外围逐渐减轻的空间分布格局.较已有研究揭示对流层NO2柱浓度宏观分布特征,本研究对近地面NO2污染特征的研究成果对于合理制定污染防控策略、降低居民暴露健康损害具有指导意义.

关 键 词:NO2  时空分布  随机森林  卫星遥感  地理要素  
收稿时间:2018-07-03

Estimating ground-level NO2 concentrations across mainland China using random forests regression modeling
YOU Jie-wen,ZOU Bin,ZHAO Xiu-ge,XU Shan,HE Rui. Estimating ground-level NO2 concentrations across mainland China using random forests regression modeling[J]. China Environmental Science, 2019, 39(3): 969-979
Authors:YOU Jie-wen  ZOU Bin  ZHAO Xiu-ge  XU Shan  HE Rui
Affiliation:1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China;2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract:
In order to capture the complex and nonlinear relationship between ground-level NO2 concentrations and predictor variables, random forest (RF) models combined with multiple types of geographic covariates were developed to estimate ground-level NO2 concentrations. In this process, satellite-based OMI NO2 tropospheric columns and multi-source geographic covariates (i.e., road network, meteorological factors, land use/cover, DEM and population density) were used as potential predictor variables and ground-level NO2 concentrations were used as the dependent variable for RF models construction. The reliability of the RF models was validated by comparison with ground-measured NO2 concentrations and typical linear land use regression (LUR) models. Afterwards, the spatial distribution characteristics of NO2 concentration mapped by RF models across time scales in mainland China were assessed and analyzed. Results showed that RF modeling outperformed LUR modeling with obvious higher model fitting-based R2 and lower RMSE, which were 0.85 and 6.08μg/m3 for monthly RF models compared with 0.53 and 10.48μg/m3 for LUR models. This was confirmed by the cross-validation-based R2 and RMSE with values of 0.84 and 6.33μg/m3, while those of LUR models were 0.53 and 10.49μg/m3. The partial dependence of RF models suggested that the actual relationships between ground-level NO2 concentrations and predictor variables were nonlinear and time-dependent. OMI NO2 tropospheric columns contributed most strongly to the RF models of NO2 concentrations, which had largest percentage of IncMSE (ranged from 97.40% to 116.54%). Meanwhile, the importance of different geographic variables could not be disregarded, which had values of IncMSE between 23.34% and 47.53%. Additionally, the NO2 concentrations simulated by RF models showed that the annual average NO2 concentrations across mainland China during the study period were 24.67μg/m3, which had significant seasonal variations with value of 31.85, 24.86, 23.24 and 18.75μg/m3 in winter, autumn, spring and summer, respectively. Spatially, higher concentrations of simulated NO2 concentrations occurred in the North China Plain and decreased to the periphery. Compared with the existing studies focusing on tropospheric NO2 column density, this study sheds new light on accurate monitoring of spatial-temporal distribution of ground-level NO2 pollution. Findings from this study will provide new implications for policy making for future national prevention and control of air pollution to reduce the population health burden in China.
Keywords:NO2  spatial-temporal distribution  random forest  satellite remote sensing  geographic covariates  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号