首页 | 本学科首页   官方微博 | 高级检索  
     

湖泊水动力模型外部输入条件不确定性和敏感性分析
引用本文:李一平,邱利,唐春燕,布旻晟,田威,余钟波,Kumud Acharya. 湖泊水动力模型外部输入条件不确定性和敏感性分析[J]. 中国环境科学, 2014, 34(2): 410-416
作者姓名:李一平  邱利  唐春燕  布旻晟  田威  余钟波  Kumud Acharya
作者单位:河海大学浅水湖泊综合治理与资源开发教育部重点实验室;河海大学环境学院;河海大学水文水资源与水利工程科学国家重点实验室;河海大学机电工程学院;江苏省水文水资源勘测局;
基金项目:江苏省高校“青蓝工程”;河海大学创新人才计划;国家“973”项目(2010CB951101);国家自然科学基金(51379061);江苏省自然科学基金(BK20131370)
摘    要:以我国典型的大型浅水湖泊太湖为研究区域,采用国内外常用的环境流体动力学模型(EFDC),结合拉丁超立方取样(LHS)方法,研究湖泊水动力模型中4个重要的外部输入条件,即3个边界输入条件(出入湖流量、风速、风向)和1个初始输入条件(初始水位),对模型水动力模拟结果(水位、水龄以及流场)的影响与贡献.结果表明,初始水位的设定对模拟全湖水位和水龄产生决定性影响,不确定性的贡献率分别达到85.73%和66.125%,对垂向平均流速影响的贡献率只有3%;风速对表面流速模拟结果影响较大,贡献率达到58.70%,而对水位和水龄的贡献率分别为5.25%和3.00%.在垂向上,各层流速受外部输入条件不确定性的影响规律相似,贡献率排序为风速(55%~60%)>风向(10%~15%)>初始水位≈出入湖流量(1%~5%).因此在模拟大型浅水湖泊水动力过程时,可以根据不同的输出目标能够有针对性地提高外部输入条件的准确度,为提高模型精确度提供有效信息.

关 键 词:输入条件  不确定性分析  敏感性分析  environmental fluid dynamic code (EFDC)  大型浅水湖泊  
收稿时间:2013-06-08

Uncertainty and sensitivity analysis of input conditions in large shallow lake hydrodynamic model
LI Yi-Ping,QIU Li,TANG Chun-Yan,BU Min-Sheng,TIAN Wei,YU Zhong-Bo,Kumud Acharya. Uncertainty and sensitivity analysis of input conditions in large shallow lake hydrodynamic model[J]. China Environmental Science, 2014, 34(2): 410-416
Authors:LI Yi-Ping  QIU Li  TANG Chun-Yan  BU Min-Sheng  TIAN Wei  YU Zhong-Bo  Kumud Acharya
Abstract:Uncertainty and sensitivity analysis of four important input conditions on the Environmental Hydrodynamic Fluid Code (EFDC) model results (i.e., water level, water age and currents) was investigated for a large shallow lake, Lake Taihu, China. The four input conditions included three boundary conditions (i.e., inflow/outflow, wind speed, wind direction) and an initial condition (i.e., initial water level). The Latin Hypercube sampling (LHS) as a global sensitivity method was used to estimate the uncertainty and sensitivity from the four input conditions. The results showed that uncertainties in the hydrodynamic process existed due to the uncertainties of model input conditions. Among the four input conditions, the initial water level was the most sensitive factor for the simulated water level and water age with the uncertainty contributions of 85.73% and 66.125% respectively, while it had barely 3% contributions to vertical averaged velocity. Wind speed played a significant role in the uncertainty of the velocity in the surface layer with a sensitivity coefficient of 58.70%, while it only had 5.25% and 3.00% contributions to the simulated water level and water age, respectively. Additionally, there was a similar impact of the four input conditions on the uncertainty of velocities in different layers. The four input conditions’ contributions to the velocities were as follows: wind speed (55%~60%) > wind direction (10%~15%) > initial water level ≈ inflow/outflow (1%~5%). Thus, the results provided reliable information for the model prediction of large shallow lakes like Lake Taihu. For different output targets, improving the precision of the input conditions with priority can efficiently enhance the precision of the hydrodynamic model.
Keywords:input conditions  uncertainty analysis  sensitive analysis  environmental fluid dynamic code (EFDC)  large shallow lake  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号