首页 | 本学科首页   官方微博 | 高级检索  
     


Tree species effects on decomposition and forest floor dynamics in a common garden
Authors:Hobbie Sarah E  Reich Peter B  Oleksyn Jacek  Ogdahl Megan  Zytkowiak Roma  Hale Cynthia  Karolewski Piotr
Affiliation:Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA. shobbie@umn.edu
Abstract:We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号