首页 | 本学科首页   官方微博 | 高级检索  
     


Microbial kinetic analysis of three different types of EBNR process
Authors:Pai T Y  Tsai Y P  Chou Y J  Chang H Y  Leu H G  Ouyang C F
Affiliation:Department of Environmental Engineering and Management, Chaoyang University of Technology, Wufeng, Taichung 413, Taiwan. bai@ms6.hinet.net
Abstract:The disadvantages of developed biological nutrient removal (BNR) processes (additional energy for liquid circulation and addition of external carbon substrate for denitrification in anoxic zones) were improved by reconfiguring the process into (1) an anaerobic zone followed by multiple stages of aerobic-anoxic zones (TNCU3 process) or (2) anaerobic, oxic, anoxic, oxic zones in sequence (TNCU2 process). These two pilot plants were operated at a recycling sludge ratio of 0.5 without internal recycle of nitrified supernatant. The sludge retention time was maintained at 10 d. The main objective of this study is to analyze the kinetics of different microorganisms in these two processes and A2O process by using the Activated Sludge Model No. 2d. The effective removal efficiency of carbon, total phosphorus and total nitrogen at 87-98%, 92-100% and 63-80%, respectively, were achieved in the testing runs. According to model simulations, the microbial kinetics in the TNCU3 and TNCU2 processes would be affected by different operations. When the step feeding strategy was adopted, the HRT was longer due to the less influent flowrate in the front stages and the microbes would grow in quantities by about 6% in the aerobic reactors. In the followed anoxic reactors, the microbes would decrease in quantities by about 12% due to the dilution effect. The dilution effects in TNCU3 and TNCU2 processes did not take place in A2O process because the recycling mixed liquid from the aerobic reactor to the anoxic reactor still contained particulate components. The XH, XPAO, and XAUT concentrations in the effluent of the last tank were lower when the step-feeding mode was adopted. The TNCU3 and TNCU2 processes could be operated efficiently without nitrified liquid circulation and addition of external carbon substrate for denitrification.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号