首页 | 本学科首页   官方微博 | 高级检索  
     

面向实时人群动力学分析的深度基本图网络
引用本文:马晴,康宇,宋卫国,曹洋. 面向实时人群动力学分析的深度基本图网络[J]. 火灾科学, 2021, 30(1): 46-53
作者姓名:马晴  康宇  宋卫国  曹洋
作者单位:中国科学技术大学火灾科学国家重点实验室,合肥,230026;中国科学技术大学火灾科学国家重点实验室,合肥,230026;中国科学技术大学自动化系,合肥,230026;中国科学技术大学自动化系,合肥,230026
基金项目:国家自然科学基金(U1933105, 61725304, 61673361)
摘    要:当前行人疏散实验中基本图计算方法通常是通过对每个行人进行跟踪实现的.但这种跟踪方法难以实现实时人群动力学分析.针对这一问题,提出了深度基本图网络.实验提出的网络框架由两个模块组成,即多尺度递归卷积神经网络(MSR-Net)和光流模块,分别对行人密度和行人速度进行估计.具体来讲,MSR-Net学习了输入图像与行人密度图之...

关 键 词:深度学习  卷积神经网络  行人动力学  基本图

Deep fundamental diagram network for real-time pedestrian dynamics analysis
MA Qing,KANG Yu,SONG Weiguo,CAO Yang. Deep fundamental diagram network for real-time pedestrian dynamics analysis[J]. Fire Safety Science, 2021, 30(1): 46-53
Authors:MA Qing  KANG Yu  SONG Weiguo  CAO Yang
Abstract:Some recent work calculated the fundamental diagram of pedestrian flow by tracking each pedestrian in the crowd from video recordings. However, this method is difficult to realize real-time pedestrian dynamics analysis. To address this problem, this work proposes a novel convolutional neural network based framework, called deep fundamental diagram network, for real-time pedestrian dynamics analysis. Our proposed framework consists of two sub-networks, the multi-scale recursive convolutional neural network (MSR-Net) and optical flow module, accounting for density distribution estimation and pedestrian motion prediction. Specifically, MSR-Net is presented to learn the direct mapping from the input image of pedestrian flow to the output map of crowd density. OF-Net is introduced to predict the velocity and direction of the pedestrian in real-time. In this way, by aligning the position of the pedestrian density map we are able to obtain the fundamental diagram, which shows good agreement with the ones from classical methods but higher computational efficiency. Simultaneously, deep fundamental diagram network can carry out pedestrian anomaly detection, which is meaningful for crowd analysis.
Keywords:Deep learning   Convolutional neural network   Pedestrian dynamics   Fundamental diagram
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《火灾科学》浏览原始摘要信息
点击此处可从《火灾科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号