首页 | 本学科首页   官方微博 | 高级检索  
     


Sensitivity of the DERMA long-range Gaussian dispersion model to meteorological input and diffusion parameters
Authors:Jens Havskov Sø  rensen
Affiliation:Jens Havskov Sørensen,
Abstract:The Danish Emergency Response Model of the Atmosphere (DERMA) is described and applied to the first ETEX experiment. By using analysed low-resolution numerical weather-prediction data from the global model of the European Centre for Medium-range Weather Forecast (ECMWF) as well as higher-resolution data from two versions of the High Resolution Limited Area Model (HIRLAM), which are operational at the Danish Meteorological Institute (DMI), the sensitivity of DERMA to the resolution of meteorological data is analysed by comparing DERMA results with concentration measurements. Furthermore, the sensitivity to boundary-layer height and diffusion parameters is studied. These parameters include the critical bulk Richardson number, which is used to estimate the atmospheric boundary-layer height, the horizontal eddy diffusivity and the Lagrangian turbulence time scale. The parameters, which provide the best performance of DERMA, are 0.25 for the critical bulk Richardson number, 6×103 m2 s-1 for the horizontal eddy diffusivity, and 3 h for the Lagrangian time scale. DERMA is much more sensitive to boundary-layer parameters when using high-resolution DMI-HIRLAM data than when using data of lower resolution from the ECMWF. Finally, the bulk Richardson number method of boundary-layer height calculation applied to DMI-HIRLAM data is verified directly against routine radiosondes released under the tracer gas plume. The boundary-layer height estimates based on analysed NWP model data agree well with observations, and the agreement deteriorates as a function of forecast length.
Keywords:Long-range Gaussian dispersion model performance   tracer gas experiment   mixing height   eddy diffusion coefficient   Lagrangian turbulence time scale
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号