首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波神经网络的芦苇潜流人工湿地水质预测
引用本文:韩耀宗,黄亮亮,宋新山,曹家枞. 基于小波神经网络的芦苇潜流人工湿地水质预测[J]. 环境科学研究, 2009, 22(12): 1460-1465
作者姓名:韩耀宗  黄亮亮  宋新山  曹家枞
作者单位:东华大学环境科学与工程学院,上海,201620;东华大学环境科学与工程学院,上海,201620;东华大学环境科学与工程学院,上海,201620;东华大学环境科学与工程学院,上海,201620
基金项目:国家自然科学基金创新群体研究基金,上海市重点学科项目 
摘    要:人工湿地系统对污水的处理效果好,工艺简单,投资运行费用低,但影响其出水水质的因素很多,并且往往是非线性的,因此目前很难将这些影响因素模型化并用于水质预测. 已有的预测方法不是过于复杂就是预测精度不高. 神经网络是一种具有较强预测能力的新方法,适用于各种非线性模型的预测. 在小试研究的基础上,使用3种不同的、经过训练的小波神经网络,对芦苇潜流人工湿地沿程各采样口的水温,ρ(DO),pH,Eh和ρ(CODCr)等水质指标进行了预测. 结果显示,各指标的平均相对误差分别为:水温≤4.21%,pH≤1.36%,ρ(DO)≤9.77%,Eh≤6.50%,ρ(CODCr)≤17.76%,表明小波神经网络模型适用于人工湿地模型的预测. 

关 键 词:芦苇人工湿地  小波神经网络  水质指标  预测
收稿时间:2009-05-07
修稿时间:2009-07-13

Water Quality Prediction Using Wavelet Neural Networks in Phragmites australis Subsurface Flow Constructed Wetlands
HAN Yao-zong,HUANG Liang-liang,SONG Xin-shan and CAO Jia-cong. Water Quality Prediction Using Wavelet Neural Networks in Phragmites australis Subsurface Flow Constructed Wetlands[J]. Research of Environmental Sciences, 2009, 22(12): 1460-1465
Authors:HAN Yao-zong  HUANG Liang-liang  SONG Xin-shan  CAO Jia-cong
Affiliation:College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Abstract:Constructed wetland systems are effective in treating sewage. They have simple process and low investment/operation costs. However, there are many factors influencing the water quality, and these factors are often nonlinear. Therefore, it is difficult to model these factors so as to predict water quality. Some prediction methods are too complicated, while others have a relatively low prediction accuracy. The artificial neural network is an efficient, new method in predicting a variety of non-linear models. On the basis of laboratory experiments, three kinds of trained wavelet neural networks were used to predict water quality along the Phragmites australis subsurface flow constructed wetlands, including water temperature, ρ(DO), pH, E_h and ρ(COD_(Cr)). The prediction results showed that the average relative error of the water temperature≤4.21%, pH≤1.36%, ρ(DO)≤9.77%, E_h≤6.50%, ρ(COD_(Cr))≤17.76%. The results indicated that the wavelet neural networks model can effectively predict various items in water quality of constructed wetlands.
Keywords:Phragmites australis constructed wetlands  wavelet neural networks  water quality index  prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号