首页 | 本学科首页   官方微博 | 高级检索  
     

基于概率神经网络的城市湖泊生态系统健康评价研究
引用本文:肖韬,袁兴中,唐清华,高强,庞志研,祝慧娜,毕温凯,林同云,梁婕,江洪炜,曾光明. 基于概率神经网络的城市湖泊生态系统健康评价研究[J]. 环境科学学报, 2013, 33(11): 3166-3172
作者姓名:肖韬  袁兴中  唐清华  高强  庞志研  祝慧娜  毕温凯  林同云  梁婕  江洪炜  曾光明
作者单位:1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;广州市水务科学研究所, 广州 510220;广州市水务科学研究所, 广州 510220;广州市水务科学研究所, 广州 510220;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;3. 河南工业大学化学化工学院, 郑州 450001;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082;1. 湖南大学环境科学与工程学院, 长沙 410082;2. 环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:广州市水务局资助项目(No. BYHGLC-2010-02)
摘    要:
概率神经网络(PNN)是一种结构简单、训练简捷、应用十分广泛的人工神经网络,并且在水质分类等环境领域已取得一定研究成果.本文选取广州市最大的人工湖——白云湖作为研究对象,结合其水质监测数据及生物监测数据,建立概率神经网络模型对其进行湖泊生态系统健康评价,得到不同监测时间点的湖泊生态系统健康评价结果.分析表明:1白云湖生态系统比较脆弱,目前净化水质的效果有限;2各监测点的评价结果均呈季节性变化,丰水期湖泊生态系统健康状态好于枯水期,年际变化不显著.实验结果表明,利用概率神经网络对湖泊生态系统健康状态进行评价是可行的,与传统评价方法相比,其具有训练时间短、权重确定客观、输出结果稳定等优势,可以运用到更多相关领域.

关 键 词:概率神经网络  湖泊生态系统  健康评价
收稿时间:2013-03-01
修稿时间:2013-04-16

Investigation of health assessment for urban lakes system based on probabilistic neural networks (PNN)
XIAO Tao,YUAN Xingzhong,TANG Qinghu,GAO Qiang,PANG Zhiyan,ZHU Huin,BI Wenkai,LIN Tongyun,LIANG Jie,JIANG Hongwei and ZENG Guangming. Investigation of health assessment for urban lakes system based on probabilistic neural networks (PNN)[J]. Acta Scientiae Circumstantiae, 2013, 33(11): 3166-3172
Authors:XIAO Tao  YUAN Xingzhong  TANG Qinghu  GAO Qiang  PANG Zhiyan  ZHU Huin  BI Wenkai  LIN Tongyun  LIANG Jie  JIANG Hongwei  ZENG Guangming
Affiliation:1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;Guangzhou Water Research Institute, Guangzhou 510220;Guangzhou Water Research Institute, Guangzhou 510220;Guangzhou Water Research Institute, Guangzhou 510220;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;3. College of Chemical engineering, Henan University of Technology, Zhengzhou 450001;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082;2. Key laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082
Abstract:
As one kind of artificial neural networks, probabilistic neural networks (PNN) is simple in structure, easy for training and widely used. Some research results have been obtained in environmental area, for example the classification of water quality. The target of this study was Baiyun Lake, the biggest artificial lake of Guangzhou city. Based on the monitoring data of water quality and biology, PNN model was constructed and applied to assess the ecosystem of Baiyun Lake at different periods. The main assessment results are listed as follows: 1 the ecological system of Baiyun Lake was relatively weak, which was unable to function in purifying water. 2 The seasonal variation of health assessment results at different monitoring points was significant, while the inter-annual variation was insignificant.In summary, it is feasible to assess the health of the lake ecosystem by probabilistic neural network. Compared with traditional evaluation methods, e.g. BP neural networks and attribute recognition method, the PNN model is more objective and stable in evaluating the health of lake ecosystem, thus can be extended to other related fields.
Keywords:probabilistic neural networks  lake ecosystem  health assessment
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号