首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The sensitivity of OMI-derived nitrogen dioxide to boundary layer temperature inversions
Authors:Julie Wallace  Pavlos Kanaroglou
Institution:1. Institut National de la Recherche Scientifique, Centre Eau-Terre-Environnement, Québec, Canada;2. Centre Hospitalier Universitaire de Québec, Centre de Recherche, Québec, Canada;3. Université Laval, Département de médecine sociale et préventive, Québec, Canada;4. Institut national de santé publique du Québec (INSPQ), Québec, Canada
Abstract:We assess the sensitivity of tropospheric nitrogen dioxide (NO2) derived from the Ozone Monitoring Instrument (OMI), to episodes of temperature inversion in the lower boundary layer. Vertical temperature data were obtained from a 91-m meteorological tower located in the study area, which is centered on the Hamilton Census Metropolitan Area, Ontario, Canada. Hamilton is an industrial city with high traffic volumes, and is therefore subjected to high levels of pollution. Pollution buildup is amplified by frequent temperature inversions which are commonly radiative, but are also induced by local physiography, proximity to Lake Ontario, and regional meteorology. The four-year period from January 2005 to December 2008 was investigated. Ground-level data for validation were obtained from in situ air quality monitors located in the study area. The results indicate that OMI is sensitive to changes in the NO2 levels during temperature inversions, and exhibits changes which roughly parallel those of in situ monitors. Overall, an 11% increase in NO2 was identified by OMI on inversion days, compared to a 44% increase measured by in situ monitors. The weekend effect was clearly exhibited under both normal and inversion scenarios with OMI. Seasonal and wind direction patterns also correlated fairly well with ground-level data. Temperature inversions have resulted in poor air quality episodes which have severely compromised the health of susceptible populations, sometime leading to premature death. The rationale for this study is to further assess the usefulness of OMI for population exposure studies in areas with sparse resources for ground-level monitoring.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号