首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sources and deposition of reactive gaseous mercury in the marine atmosphere
Authors:Christopher D Holmes  Daniel J Jacob  Robert P Mason  Dan A Jaffe
Institution:1. State Environmental Protection Key Lab of Environmental Risk Assessment and control on Chemical Processes, East China University of Science and Technology, Shanghai 200237, PR China;2. Shanghai Environment Monitoring Center, Shanghai 200235, PR China
Abstract:Observations of reactive gaseous mercury (RGM) in marine air show a consistent diurnal cycle with minimum at night, rapid increase at sunrise, maximum at midday, and rapid decline in afternoon. We use a box model for the marine boundary layer (MBL) to interpret these observations in terms of RGM sources and sinks. The morning rise and midday maximum are consistent with oxidation of elemental mercury (Hg0) by Br atoms, requiring <2 ppt BrO in most conditions. Oxidation of Hg0 by Br accounts for 35–60% of the RGM source in our model MBL, with most of the remainder contributed by oxidation of Hg0 by ozone (5–20%) and entrainment of RGM-rich air from the free troposphere (25–40%). Oxidation of Hg0 by Cl is minor (3–7%), and oxidation by OH cannot reproduce the observed RGM diurnal cycle, suggesting that it is unimportant. Fitting the RGM observations could be achieved in the model without oxidation of Hg0 by ozone (leaving Br as the only significant oxidant) by increasing the entrainment flux from the free troposphere. The large relative diurnal amplitude of RGM concentrations implies rapid loss with a lifetime of only a few hours. We show that this can be quantitatively explained by rapid, mass-transfer-limited uptake of RGM into sea-salt aerosols as HgCl3? and HgCl42?. Our results suggest that 80–95% of HgII in the MBL should be present in sea-salt aerosol rather than gas-phase, and that deposition of sea-salt aerosols is the major pathway delivering HgII to the ocean.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号