首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Road traffic emission factors for heavy metals
Authors:Christer Johansson  Michael Norman  Lars Burman
Institution:1. College of Environment, Sichuan Agricultural University, Chengdu 611130, China;2. Department of Environmental Engineering, College of Food and Biological Engineering, Jimei University, Xiamen 361021, China;3. School of Life Sciences, Sichuan Agricultural University, Yaan 625014, China;1. Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi''an 710119, China;2. School of Geography and Environment, Baoji University of Arts and Sciences, Baoji 721013, China
Abstract:Quantifying the emissions and concentrations of heavy metals in urban air is a prerequisite for assessing their health effects. In this paper a combination of measurements and modelling is used to assess the contribution from road traffic emissions. Concentrations of particulate heavy metals in air were measured simultaneously during 1 year at a densely trafficked street and at an urban background site in Stockholm, Sweden. Annual mean concentrations of cadmium were 50 times lower than the EU directive and for nickel and arsenic concentrations were 10 and six times lower, respectively. More than a factor of two higher concentrations was in general observed at the street in comparison to roof levels indicating the strong influence from local road traffic emissions. The only compound with a significantly decreasing trend in the urban background was Pb with 9.1 ng m?3 in 1995/96 compared to 3.4 ng m?3 2003/04. This is likely due to decreased emissions from wear of brake linings and reduced emissions due to oil and coal combustion in central Europe.Total road traffic emission factors for heavy metals were estimated using parallel measurements of NOx concentrations and knowledge of NOx emission factors. In general, the emission factors for the street were higher than reported in road tunnel measurements. This could partly be due to different driving conditions, since especially for metals which are mainly emitted from brake wear, more stop and go driving in the street compared to in road tunnels is likely to increase emissions. Total emissions were compared with exhaust emissions, obtained from the COPERT model and brake wear emissions based on an earlier study in Stockholm. For Cu, Ni and Zn the sum of brake wear and exhaust emissions agreed very well with estimated total emission factors in this study. More than 90% of the road traffic emissions of Cu were due to brake wear. For Ni more than 80% is estimated to be due to exhaust emissions and for Zn around 40% of road traffic emissions are estimated to be due to exhaust emissions. Pb is also mainly due to exhaust emissions (90%); a fuel Pb content of only 0.5 mg L?1 would give similar emission factor as that based on the concentration increment at the street. This is the first study using simultaneous measurements of heavy metals at street and roof enabling calculations of emission factors using a tracer technique.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号