首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flow and dispersion in street intersections
Authors:L Soulhac  V Garbero  P Salizzoni  P Mejean  RJ Perkins
Institution:1. DICEA, Università di Roma “La Sapienza”, Via Eudossiana 18, 00184 Roma, Italy;2. DICAAR, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy;1. School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China;2. Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China;3. Guangzhou Urban Planning Design & Survey Research Institute, Urban Planning Research Center, Guangzhou, China
Abstract:Street intersections play an important role in determining pollutant concentrations in the urban canopy – vehicle emissions often increase in the vicinity of road intersections, and the complex flow patterns that occur within the intersection determine the pollutant fluxes into adjoining streets and into the atmosphere. Operational models for urban air quality therefore need to take account of the particular characteristics of street intersections. We have performed an experimental and numerical investigation of flow and dispersion mechanisms within an urban intersection, and on the basis of our observations and results, we have developed a new operational model for pollutant exchanges in the intersection, which takes account of the non-uniformity of the pollutant fluxes entering and leaving the intersection. The intersection is created by two streets of square cross-section, crossing orthogonally; concentrations were measured by releasing a neutrally buoyant tracer gas from a line source located in one of the streets. As a general result, the numerical simulations agree well with the measurements made in the wind tunnel experiments, except for the case of ground-level concentrations, where the computed concentrations far from the axis of the line source are significantly lower than the measured values. In the first part of the study we investigate the influence of an intersection on the velocity and concentration fields in the adjoining streets; we show that the immediate influence of the intersection extends within the adjoining streets, to a distance of the order of the characteristic size of the streets. A large recirculating vortex is formed at the entrance to the cross-wind streets, and this determines the exchange of pollutants between the streets and the intersection. For some wind directions the average velocity in the street segment between intersections is the same as that which occurs in an infinitely long street with the same wind, but for other angles the average velocity in the finite-length street is significantly lower. The average concentration along a finite-length street is significantly different from that observed in an infinitely long street. In the second part of the study we investigate how the pollutant fluxes in the incoming streets are redistributed amongst the outgoing streets. An analysis of the mean streamlines shows that the flows remain relatively planar, with little variation over the vertical, and we have exploited this result to develop a simple operational model for the redistribution of pollutant fluxes within the intersection. This model has been further adapted to take account of the influence of fluctuations in wind direction over typical averaging periods. The resulting model is used in the street network model SIRANE.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号