首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media
Authors:Thullner Martin  Mauclaire Laurie  Schroth Martin H  Kinzelbach Wolfgang  Zeyer Josef
Institution:Institute of Terrestrial Ecology, Swiss Federal Institute of Technology (ETH) Zurich. martin.thullner@cornell.edu
Abstract:Bacterial growth and its interaction with water flow was investigated in a two-dimensional flow field in a saturated porous medium. A flow cell (56 x 44 x 1 cm) was filled with glass beads and operated under a continuous flow of a mineral medium containing nitrate as electron acceptor. A glucose solution was injected through an injection port, simulating a point source contamination. Visible light transmission was used to observe the distribution of the growing biomass and water flow during the experiment. At the end of the experiment (on day 31), porous medium samples were destructively collected and analyzed for abundance of total and active bacterial cells, bacterial cell volume and concentration of polysaccharides and proteins. Microbial growth was observed in two stripes along the length of the flow cell, starting at the glucose injection port, where highest biomass concentrations were obtained. The spatial distribution of biomass indicated that microbial activity was limited by transverse mixing between glucose and nitrate media, as only in the mixing zone between the media high biological activities were achieved. The ability of the biomass to change the flow pattern in the flow cell was observed, indicating that the biomass was locally reducing the hydraulic conductivity of the porous medium. This bioclogging effect became evident when the injection of the glucose solution was turned off and water flow still bypassed the area around the glucose injection port, preserving the flow pattern as it was during the injection of the glucose solution. As flow bypass was possible in this system, the average hydraulic properties of the flow cell were not affected by the produced biomass. Even in the vicinity of the injection port, the total volume of the bacterial cells remained below 0.01% of the pore space and was unlikely to be responsible for the bioclogging. However, the bacteria produced large amounts of extracellular polymeric substances (EPS), which likely caused the observed bioclogging effects.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号