摘 要: | 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出1种边坡稳定性自动机器学习预测方法。首先,简要介绍5种主流开源自动机器学习框架;其次,以422组边坡稳定性样本为数据集,进行自动机器学习纯自动化训练,并与传统机器学习对比分析模型的性能与耗时;最后,综合讨论与比较典型自动机器学习框架的特性。研究结果表明:自动机器学习预测效果总体上优于传统机器学习,提升边坡稳定性预测准确率和稳健性,且无需人为干预。研究结果可为岩土工作人员准确可靠地评价边坡稳定性提供便捷条件。
|