首页 | 本学科首页   官方微博 | 高级检索  
     检索      


River network structure shapes interannual feedbacks between adult sea lamprey migration and larval habitation
Authors:Thomas M Neeson  Michael J Wiley
Institution:a School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48104, United States
b Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48104, United States
Abstract:Adult sea lampreys (Petromyzon marinus) migrating upstream to spawn follow a pheromone released by instream larvae. The size (i.e. flow) of a tributary dilutes the concentration of this pheromone, such that the downstream propagation pattern of larval pheromone must be influenced by patterns in the relative sizes and numbers of confluent tributaries. We developed an individual-based model to explicitly test the resulting hypothesis that river network structure influences the migration decisions of adult lampreys following the larval pheromone, and in turn the distribution of larvae. First, we initialized the model using randomly generated river networks, and found a strong positive relationship between network diameter and larval aggregation. Larvae aggregated over time, and the degree and rate of this aggregation depended on network diameter. Second, we initialized the model using a river network based on the Muskegon River, Michigan, and compared model-generated larval distribution to available field survey data. We found a significant correlation between model-generated larval abundance and field-measured larval densities (r2 = 0.54; p < 0.0001). We also found an inverse relationship between subwatershed area and the degree to which path-dependent effects influenced larval abundance in that subwatershed. Our results overall suggest that larval distribution across a watershed results from a system of context-dependent interannual feedbacks shaped by network structure and the past migratory and spawning behavior of adults.
Keywords:Sea lamprey  River network  Pheromone  Anadromous fish  Migration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号