首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomass Carbon Ratio of Polymer Composites Measured by Accelerator Mass Spectrometry
Authors:Masahiro Funabashi  Fumi Ninomiya  Edgar Dulay Flores  Masao Kunioka
Institution:(1) Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba Ibaraki, 305-8565, Japan;(2) Bureau of Postharvest Research and Extension (BPRE), CLUS Compound, Science City of Munoz, Nueva Ecija, Philippines
Abstract:The evaluation method of biomass carbon ratio of polymer composite samples including organic and inorganic carbons individually was investigated. Biodegradable plastics and biobased plastics can have their mechanical properties improved by combining with inorganic fillers. Polymer composites consisting of biodegradable plastics and carbonate were prepared by two different methods. Poly(lactic acid) (PLA) composite was prepared by synthesis from l-lactide with catalyst and calcium carbonate (CaCO3) powders from lime. Poly(butylene succinate) (PBS) composite was prepared by hot-pressing the mixture of PBS powder and CaCO3 powders from oyster shells. The mechanical properties of composite samples were investigated by a tensile test and a compression test using an Instron type mechanical tester. Tensile test with a dumbbell shape specimen was performed for PBS composite samples and compression test with a column shape specimen for PLA composite samples. Strength, elastic modulus and fracture strain were obtained from the above tests. Biomass carbon ratio is regulated in the American Standards for Testing and Materials (ASTM). In ASTM standards on biomass carbon ratio, it is required that carbon atoms from carbonates, such as CaCO3, are omitted. Biomass carbon ratio was evaluated by ratio of 14C to 12C in the samples using Accelerator Mass Spectrometry (AMS). The effect of pretreatment, such as oxidation temperature and reaction by acid, on results of biomass carbon ratio was investigated. Mechanical properties decrease with increasing CaCO3 content. The possibility of an evaluation method of biomass carbon ratio of materials including organic and inorganic carbons was shown.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号