Abstract: | ![]() ABSTRACT: Periodic flood disturbance is a well known controlling factor of in channel and floodplain ecosystem function. However, channel manipulations during the last century have potentially altered hydrologic fluctuations, and thus ecosystem function. We examined temporal river stage hydrology, through autocorrelation analysis, at seven gauges along the Mississippi River to quantify flow periodicity and effects of systematic channel modifications on flow periodicity. Intraannual variation follows a strong one‐year cycle of six months higher flow and six months lower flow for the entire Mississippi River drainage, with precipitation as a driving force. Interannual hydrologic variation differs between the upper and lower river segments. A clear quasi‐biennial oscillation pattern was evident throughout the lower river section. The effect of channel alterations was a decreased magnitude of differences between lower and higher flows. The upper section, however, suggests a 12‐to 14‐year periodicity prior to alterations and a decreased duration of lower flow years following systematic modifications. Interannual variograms clearly depict very different temporal hydrology between the upper Mississippi River and the lower Mississippi River, suggesting the simple transfer of knowledge from one segment to the other oversimplifies the complexity of a large river system. |