首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface properties and catalytic performance of La(1-x)Sr(x)FeO(3) perovskite-type oxides for methane combustion
Authors:Wang Ching-Huei  Chen Chun-Liang  Weng Hung-Shan
Institution:Department of Biochemical Engineering, Kao Yuan Institute of Technology, Kaohsiung 821, Taiwan.
Abstract:La(1-x)Sr(x)FeO(3) (x=0.0-1.0) perovskites were prepared and tested for the combustion of methane. X-ray diffraction (XRD) patterns revealed the presence of a single perovskite structure for substitutions 0x0.3, however Fe(2)O(3), SrCO(3) and SrFeO(3) phases were observed for substitutions x>0.3. The results of activity test indicate that with La(1-x)Sr(x)FeO(3) as the catalyst, the combustion of methane can take place at low temperatures around 400 degrees C. Partial substitution of La with Sr increases the activity and an optimal substitution fraction (x=0.5) exists in the La(1-x)Sr(x)FeO(3) catalysts. Catalyst activity can be well correlated to the product of the specific surface area and atomic ratio of Fe to La+Sr on the catalyst surface. Experimental results of O(2)-TPD and CH(4)-TPD in the range of 350-500 degrees C indicate that the amount of oxygen desorbed from the La(1-x)Sr(x)FeO(3) catalysts is far larger than that of methane. Therefore, it can be proposed that the catalytic oxidation of CH(4) over these catalysts proceeds with the surface reaction between CH(4) in the gas phase and the adsorbed O(2). Addition of water vapor or CO(2) to the feed inhibited catalyst activity, but the inhibition was reversible and became negligible at high reaction temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号