首页 | 本学科首页   官方微博 | 高级检索  
     

我国水源污染事故风险点定量识别方法
引用本文:张官兵, 李欣洁, 赵燊, 安伟. 我国水源污染事故风险点定量识别方法[J]. 环境工程学报, 2021, 15(1): 341-349. doi: 10.12030/j.cjee.202003159
作者姓名:张官兵  李欣洁  赵燊  安伟
作者单位:1.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085; 2.中国科学院大学,北京 100049; 3.北京林业大学理学院,北京 100083
基金项目:水体污染控制与治理科技重大专项
摘    要:水源事故的频发会对城市供水系统产生威胁,有必要针对供水系统风险进行评估和防控。针对水源事故频发及高发因素定量甄别研究,筛选统计了国内近20年来1 900多起水质突发事故案例,梳理了触发水源水质污染的多种因素,通过构建水源水质安全事故树和贝叶斯网络进行了相互验证分析。结果表明:我国水源污染事故主要因素贡献为依次突然排放(0.466)、污染长期累积(0.242)、交通事故(0.109)等;采用贝叶斯网络计算进行验证,其结果与事故树方法一致性较好。该方法有助于水源污染防控工作中风险点甄别和排序,可为我国饮用水安全保障水平的提升提供支撑。

关 键 词:水源事故   事故树   筛选统计   事故风险甄别
收稿时间:2020-03-25

Quantitative identification of causation points for water source pollution accident in China
ZHANG Guanbing, LI Xinjie, ZHAO Shen, AN Wei. Quantitative identification of causation points for water source pollution accident in China[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 341-349. doi: 10.12030/j.cjee.202003159
Authors:ZHANG Guanbing  LI Xinjie  ZHAO Shen  AN Wei
Affiliation:1.State Key Laboratory of Environmental Aquatic Chemistry, Center for Ecological and Environmental Research, Chinese Academy of Sciences, Beijing 100085, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.School of Science, Beijing Forestry University, Beijing 100083, China
Abstract:With the development of China’s economy in the past ten years, water accidents have occurred frequently, which is a certain degree of threat to the urban water supply system. Therefore, it is necessary to evaluate, prevent and control the risks of the water supply system. According to the quantitative screening research on frequent and high-incidence factors of water source accidents, more than 1900 water quality accidents in the past 20 years have been screened in China, and various factors that triggered water quality pollution have been sorted out, and the mutual analysis was conducted through the construction of fault tree analysis and Bayes networks. The results reveal that the main factors contributing to water pollution accidents in China were sudden discharge (0.466), long-term accumulation of pollution (0.242), and traffic accidents (0.109). The Bayesian network method has been utilized for verification, and the results are in good agreement with the fault tree analysis. The methods are helpful for the identification and ordering of causation points in the prevention and control of water pollution, and can provide support for improving the level of drinking water safety in China.
Keywords:water source accident  fault tree  screening statistics  identification of causation points
本文献已被 万方数据 等数据库收录!
点击此处可从《环境工程学报》浏览原始摘要信息
点击此处可从《环境工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号