首页 | 本学科首页   官方微博 | 高级检索  
     检索      

羧基改性阴极对微生物电合成系统产乙酸性能的影响机制
引用本文:祁家欣,曾翠平,骆海萍,刘广立,张仁铎,卢耀斌.羧基改性阴极对微生物电合成系统产乙酸性能的影响机制[J].环境科学,2019,40(5):2302-2309.
作者姓名:祁家欣  曾翠平  骆海萍  刘广立  张仁铎  卢耀斌
作者单位:中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510006;中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510006;中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510006;中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510006;中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510006;中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州 510006
基金项目:广州市科技计划项目"珠江新星"人才专项(201710010031);广东省自然科学基金项目(2015A030313169,2015A030313102)国家自然科学基金项目(51308557,41471181,51278500)
摘    要:微生物电合成系统(microbial electrosynthesis systems,MESs)可利用微生物将二氧化碳转化为有价化合物,有望实现温室气体的资源化利用,然而,其合成效率仍需进一步提高.本研究通过电化学还原重氮盐反应将特定的官能团—COOH接枝到碳布电极表面,探究改性阴极对于MESs性能的影响.结果发现,经—COOH改性的阴极材料亲水性显著提高,而循环伏安扫描电流变弱. MESs在启动阶段性能差异最大,运行48 h,改性组CA-H、CA-M、CA-L的产氢速率是CK的21. 45、28. 60和22. 75倍;运行120 h,CA-H、CA-M和CA-L的乙酸累积浓度是CK的2. 01、2. 43和1. 44倍. MESs运行324 h后,各阴极的电化学活性无明显差异,生物膜蛋白量无明显差异(~0. 47 mg·cm~(-2)).阴极生物膜的群落结构分析发现,属水平上由Acetobacterium、norank_p_Saccharibacteria和Thioclava占据主导,总相对丰度占到59. 6%到82. 1%;各阴极之间产乙酸功能菌Acetobacterium的相对丰度差别不大(31. 3%~40. 1%),而消耗乙酸的norank_p_Saccharibacteria属在CA-H、CA-M、CA-L和CK的相对丰度分别为:16. 1%、24. 6%、31. 1%和37. 5%.羧基改性阴极对MESs的启动阶段影响较大,可为MESs的快速启动提供新的思路.

关 键 词:微生物电合成系统(MESs)  阴极  羧基改性  生物膜  产乙酸
收稿时间:2018/8/30 0:00:00
修稿时间:2018/12/8 0:00:00

Impact Mechanisms of Carboxyl Group Modified Cathode on Acetate Production in Microbial Electrosynthesis Systems
QI Jia-xin,ZENG Cui-ping,LUO Hai-ping,LIU Guang-li,ZHANG Ren-duo and LU Yao-bin.Impact Mechanisms of Carboxyl Group Modified Cathode on Acetate Production in Microbial Electrosynthesis Systems[J].Chinese Journal of Environmental Science,2019,40(5):2302-2309.
Authors:QI Jia-xin  ZENG Cui-ping  LUO Hai-ping  LIU Guang-li  ZHANG Ren-duo and LU Yao-bin
Institution:Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China and Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
Abstract:Microbial electrosynthesis systems (MESs) can convert carbon dioxide into added value compounds using microorganisms as catalyst, which is expected to help achieve conversion of greenhouse gases into resources. However, the synthetic efficiency of MESs is far behind the industry requirements. In this study, carbon cloth surfaces were bonded with carboxyl groups by electrochemical reduction of aryl diazonium salts and then used as a cathode in MESs reactors. The results showed that the hydrophilicity of the carbon cloth surfaces improved after the carboxyl groups were modified. However, weaker current of cyclic voltammetry was obtained in the modified cathode. Significant differences were observed between modified (CA-H, CA-M, CA-L) and non-modified cathode (CK) during the start-up period. After 48h, the hydrogen production rate of CA-H, CA-M, CA-L was 21.45, 28.60, and 22.75 times higher than CK. After 120h, the acetate accumulation concentration of CA-H, CA-M, CA-L was 2.01, 2.43, and 1.44 times higher than CK. After 324h, there was little difference in the electrochemical activity of cathodic biofilm and protein content (about 0.47 mg·cm-2) in all groups. The analysis of the community structure of cathodic biofilm showed that, in the genus level, Acetobacterium, Norank_p_Saccharibacteria, and Thioclava were the dominant species, accounting for 59.6% to 82.1%. There was little difference in the relative abundance of Acetobacterium in all groups (31.3% to 40.1%). However, the relative abundance of norank_p_Saccharibacteria in CA-H, CA-M, CA-L, and CK were 16.1%, 24.6%, 31.1%, and 37.5%, respectively. The carboxyl modified cathode had a great influence on the start-up stage of MESs, which could be a new idea for the rapid start-up of MESs.
Keywords:microbial electrosynthesis systems (MESs)  cathode  carboxyl group modified  biofilm  acetate production
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号