摘 要: | 为准确测算建筑工程安全文明施工费,提出案例推理技术(CBR)-最大信息系数(MIC)-随机森林(RF)预测模型方法。通过实地调研61个典型工程样本数据,选择12个安全文明施工费的影响因素作为候选特征变量,采用CBR进行样本相似度检索以构建模型的训练样本集,运用MIC确定关键特征变量输入模型,组合建立3种RF模型(RF、MIC-RF和CBR-MIC-RF),并通过实证分析其预测精度。结果表明:通过样本相似度检索和识别关键特征变量,可显著提高RF模型的预测精度(平均绝对百分比误差(MAPE)为3.35%);模型预测精度随不同等级的相似度阈值呈“U”型变化,设置合适的相似度阈值对提升模型的预测效果至为关键;CBR-MIC-RF模型可获得比支持向量机模型更好的预测性能。
|