首页 | 本学科首页   官方微博 | 高级检索  
     


Mineralization,metabolism and formation of non-extractable residues of 14C-labelled organic contaminants during pilot-scale composting of municipal biowaste
Authors:Hartlieb Nicola  Ertunc Tanya  Schaeffer Andreas  Klein Werner
Affiliation:Fraunhofer-Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, D-57392 Schmallenberg, Germany. hartlieb@itas.fzk.de
Abstract:Use of municipal biowaste for composting instead of its disposal has become a major source of concern as regards contamination by hazardous substances. To elucidate the hazard potential of compost application, municipal biowaste was amended with 14C-labelled model substances (pyrene, simazine) and incubated in a pilot-scale composting simulation system. A mass balance incorporating the mineralization, metabolism and sorption of the two model substances was established over a period of 370 days. The results are quite different for the two chemicals, reflecting their intrinsic properties: more than 60% of the applied 14C-simazine resulted in non-extractable residues (NER). Silylation experiments indicated that the formation of NER from simazine and its metabolites was due to both physical entrapment in the matrix and chemical binding. The mineralization and formation of NER represented the major pathways of disappearance for pyrene during one year of composting, accounting for 60 and 26% of initially applied 14C-activity, respectively. Mineralization occurred delayed after the thermophilic phase. As regards remobilization, release of pyrene from NER during composting could be excluded, whereas simazine, data were inconclusive in this respect.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号