首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of Soil Extraction Isotherms of Soil Samples Saturated With Nonpolar Liquids
Authors:András Makó  Barbara Elek
Affiliation:(1) Georgikon Faculty of Agriculture, Department of Soil Science and Agrochemistry, University of Veszprém, Deák F. u. 16, H8360 Keszthely, Hungary
Abstract:In multiphase systems capillary pressures play a significant role on fluid movement and retention. The facility to predict the effect of different thermal remediation strategies requires the knowledge of the effect of temperature on capillary pressure-saturation relationships in the soils. The objective of recent study was (a) to develop a technique for routinely measuring the pressure-saturation curves of soil samples saturated with a nonpolar liquid at different regulated temperatures (b) to build a database using the measured pressure-saturation curves and the physical, chemical properties of the model soils (c) to establish the dependence of nonaqueous phase liquid retention on the soil properties and the temperature. The retention curves (extraction isotherms) with nonaqueous phase liquid were determined using a modified pressure plate extractor. The wetting phase was a non-aromatic hydrocarbon distillation product. Pressure plates were designed and constructed in the laboratory of our department. The temperature was held constant at 20, 40 and 60 C. Statistical analysis was performed involving selected soil parameters and the measured nonaqueous phase liquid retention data. The results show that knowing some easily measurable soil parameters (bulk density, particle size distribution, humus and lime content) we can estimate the nonaqueous phase liquid retention of the soils. The measured “extraction isotherms” provide essential information about the temperature-dependency of pressure-saturation curves.
Keywords:extraction isotherms  hydrocarbon spill  NAPL retention  pressure plate extractor  pressure-saturation curves  soil pollution  temperature-dependency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号