首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of phase behavior during rapid decompression of rich natural gases
Affiliation:1. School of Resource and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China;2. Minerals and Materials Science & Technology Mawson Institute, Mawson Lakes Campus, South Australia 5095, Australia
Abstract:The effect of the condensation process on the gas and liquid phase behavior during rapid decompression of rich natural gases is studied in the paper numerically. A one-dimensional mathematical model of transient thermal two-phase flow of compressible multi-component natural gas mixture and liquid phase in a shock tube is developed. The set of mass, momentum and enthalpy conservation equations are solved for the gas and liquid phases. The approach to model a liquid condensation process during rapid decompression of rich natural gas mixture is proposed. The mass transfer between the gas and the liquid is taken into account by introducing the appropriate terms into the governing equations. Thermo-physical properties of multi-component natural gas mixture are calculated by solving the Equation of State (EOS) in the form of the Soave–Redlich–Kwong (SRK-EOS) model. The proposed liquid condensation model is integrated into the GDP model. A simple case of GDP model, where the liquid was not considered, was extensively validated on base and dry natural gases. The proposed two-phase model is validated against the experiments where the decompression wave speed was measured in rich natural gases at low temperature. It shows a good agreement with the experimental data.
Keywords:Mathematical modeling  Multiphase flow  Mass transfer  Condensation  Gases  Rapid decompression
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号