首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Remediation mechanisms of mercapto-grafted palygorskite for cadmium pollutant in paddy soil
Authors:Liang  Xuefeng  Qin  Xu  Huang  Qingqing  Huang  Rong  Yin  Xiuling  Cai  Yanming  Wang  Lin  Sun  Yuebing  Xu  Yingming
Institution:1.Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, No. 31, Fukang Road, Nankai District, Tianjin, 300191, People’s Republic of China
;2.Key Laboratory of Original Environmental Pollution Control of MOA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, People’s Republic of China
;3.College of Environment and Resources, Jilin University, Changchun, 130021, People’s Republic of China
;
Abstract:

The immobilization agent was the key factor that determined the success of remediation of heavy metal polluted soil. In this study, mercapto-grafted palygorskite (MP) as a novel and efficient immobilization agent was utilized for the remediation of Cd-polluted paddy soil in pot trials, and the remediation mechanisms were investigated in the aspect of soil chemistry and plant physiology with different rice cultivars as model plants. Mercapto-grafted palygorskite at applied doses of 0.1–0.3% could reduce Cd contents of brown rice and straws of different cultivars significantly. Both reduced DTPA-extractable Cd contents in rhizosphere and non-rhizosphere soil and decreasing Cd contents in iron plaques on rice root surfaces confirmed that MP was an efficient immobilization agent for Cd pollutant in paddy soil. In the aspect of soil chemistry, the pH values of rhizosphere and non-rhizosphere soils had no statistical changes in the MP treatment groups, but their zeta potentials decreased obviously, indicating that MP could enhance the fixation or sorption of Cd on soil compositions. In the aspect of antioxidant system, MP could increase POD activity of rice roots significantly to alleviate the stress of Cd to roots, and resulted in the decrease of T-AOC, SOD, and CAT activities of rice roots of the selected cultivars. MP had no inhabitation or enhancement effects on TSH of rice roots but enhance the contents of MTs and NPT to binding Cd to complete detoxification process. MP as a novel and efficient immobilization agent could complete the remediation effects through soil chemistry and plant physiological mechanisms.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号