首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimizing the Monitoring Strategy of Wastewater Treatment Plants by Multiobjective Neural Networks Approach
Authors:Ho-Wen Chen  Shu-Kuang Ning  Ruey-Fang Yu  Ming-Sung Hung
Institution:(1) Department of Environmental Engineering and Management, Chao-Yang University of Technology, Taichung, 413, Taiwan, Republic of China;(2) Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, Republic of China;(3) Department of Safety, Health and Environmental Engineering, National United University, Miao-Li, 360, Taiwan, Republic of China
Abstract:This paper applies artificial neural network (ANN) to model the observed effluent quality data. The ANN’s structure, involving the number of hidden layer and node and their connection, is determined endogenously by resorting to the compromise of data cost minimization and prediction accuracy maximization. To obtain the best compromise possible, the model introduces an aspiration variable (μ) that represents the level of aspiration achieved in one objective and the conjugate of μ, (1 − μ), represents level of aspiration achieved in the other objective. Because a massive amount of calculation is required, the model applies genetic algorithm (GA) for its computational flexibility and capability to ensure global solution. Feasibility and practicality of the model is tested by a case study with a set of 150 daily observations on 17 operational variables and quality parameters at an industrial wastewater treatment plant (WTP) located in southern Taiwan. Of these 17 variables open to selection, only 6 variables, wastewater flow rate (Q), CN, SS, MLSS, pH and COD are selected by the model to achieve the maximum accuracy of prediction, 0.94, with a total cost of 5,950 NT$. By constraining budget availability, the variables included in the model are reduced in number, causing a concomitant reduction in prediction accuracy, that is, by varying μ (aspiration level of accuracy), a trajectory of cost and accuracy is generated. The calculation results a cost of 3,650 NT$ and 0.54 accuracy for the case with variables including flow rate, SCN and SS in equalization basin; aeration tank hydraulic retention time (HRT) and percentage of returned sludge (R%) are selected for building the prediction model when the importance of required budget is equal to the accuracy of prediction model. In addition, when required cost for building ANN model is between 3,650 NT$ and 3,900 NT$, the marginal return of budget input is highest in the entire range of calculation.
Keywords:Neural network  Genetic algorithm  Wastewater treatment plant  Multiobjective programming
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号