首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methane fluxes in aerobic soils
Authors:K W T Goulding  T W Willison  C P Webster  D S Powlson
Institution:(1) Soil Science Department, IACR-Rothamsted, AL5 2JQ Harpenden, Herts, UK
Abstract:Aerobic soils are an important sink for methane (CH4), contributing up to 15% of global CH4 destruction. However, the sink strength is significantly affected by land management, nitrogen (N) fertilizers and acidity. The rates of uptake from the atmosphere of both enhanced (10 ppmv) and ambient (2 ppmv) concentrations of CH4 were measured in laboratory incubations of soil cores under controlled conditions taken from sites in the U.K. and Germany. The most rapid rates of uptake were measured in soil from deciduous woodland at pH 4 (measured in water). Extended (150 years) cultivation of land for arable crops reduced uptake rate by 85% compared to that in the same soil under an adjacent woodland. The long-term application of ammonium (NH4)-based fertilizer, but not nitrate (NO3)-based fertilizer, completely inhibited CH4 uptake, but the application for the same period of farmyard manure (FYM) that contained more N than the fertilizer had no inhibitory effect. Where a combination of FYM and inorganic fertilizer was applied there was a reduction in methane uptake rate compared to plots receiving solely FYM.Autoclaving showed that the uptake of CH4 was microbially mediated. The most likely causes of the inhibitory effects seen are (i) insufficient concentrations of CH4 in situ to activate methane monooxygenase; (ii) the direct inhibition of CH4 oxidation by NH inf4 sup+ ions; (iii) the suppression of methanotrophs by NH4-based fertilizers; (iv) the requirement of methanotrophs for a stable soil architecture which is incompatible with the disturbance caused by regular arable cultivation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号