首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: a laboratory-scale feasibility study
Authors:O'Connor C Sidoli  Leppi N W  Edwards R  Sunderland G
Institution:(1) School of Biological and Earth Sciences, Liverpool John Moores University, Liverpool, U.K;(2) Hawkins &Associates, Wilmslow, U.K;(3) Capenhurst Tech, Capenhurst, Chester, U.K
Abstract:The use of a combination of electrokinetic remediation and phytoremediation to decontaminate two metal-polluted soils has been demonstrated in laboratory-scale reactors. One soil was heavily contaminated with copper, the other with cadmium and arsenic (2500 mgrg g-1 Cu; 300-400 mgrg g-1 Cd and 230 mgrg g-1 As, respectively). Test reactors with twoseparated chambers, each with a capacity of 5.25 kg soil, wereconstructed, then the respective chambers were filled with eithera mixture of the polluted soil and a control topsoil (75:25) ortopsoil alone. Reactors were sown with perennial ryegrass (Lolium perenne cv Elka) and a constant voltage of 30 V was applied continually across the soils in each reactor. Soil sampling took place at the start and the end of the test run, whilst plant foliage was sampled after approximately 3 weeks (both reactors) 6 weeks (Cd soil reactor only) and at the conclusion of each test run (98 days Cu soil, 80 days Cd soil). Soil and plant metal concentrations were measured, together withsoil pH. Results showed that in both soils there was a significant re-distribution of metals from anode to cathode in the test reactors, coupled with an enhancement of plant Cu uptakein the cathode region for the Cu soil. Patterns of plant Cd uptake were less clear cut and were not as clearly related to theredistribution of Cd measured in the soil. There was significant acidification of soil at the anode in each test reactor, but soilpH in other parts of the reactor changed little during the courseof the experiment. Plant growth was affected at the anode, but was not affected in other parts of the reactor. There was no visual evidence of metal toxicity in the ryegrass in either polluted soil. Some effects on soil fungi were apparent, with a stimulation of Fusarium infection of ryegrass in the cathode region of all reactors and the appearance of sporophoresof Coprinus in the same location. It is concluded that the combination of the two techniques represents a very promising approach to the decontamination of metal polluted soils that nowrequires validation in field conditions.
Keywords:cadmium  copper  electrochemical  electrokinetic  metal-polluted soil  phytoremediation  ryegrass
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号