首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial Characterization and Prioritization of Heavy Metal Contaminated Soil-Water Resources in Peri-Urban Areas of National Capital Territory (NCT), Delhi
Authors:Ravinder Kaur  Rupa Rani
Institution:(1) Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi, 110012, India
Abstract:Due to rapid industrialization and urbanization during last two decades, contamination of soils by heavy metals is on an increase globally. Lands under peri-urban agriculture are the worst affected. In NCT, Delhi about 14.4% of land area is chemically degraded. In order to take care of this problem, recently the Supreme Court of India ordered to shift various non-confirming (about 39,000 units) industries to regions outside NCT, Delhi. However in spite of this, there have been several reports and parliamentary debates on the phyto-toxicity and extensive accumulation of heavy metals in the region. Literature review revealed that the basis of these debates is a few studies on some point locations in/around Delhi. It was further observed that information on the distribution and extent of heavy metal pollution problem in the region was completely missing. The present study was thus basically aimed at assessing the spatial distribution/extent and type of heavy metal pollution in the study area, for enabling future designing of appropriate site-specific management measures by the decision makers.For this, detailed spatial information on bio-available heavy metal concentrations in the soils and surface/sub-surface waters of NCT (Delhi) was generated through actual soil/water surveys, standard laboratory methods and GIS techniques. The study showed that concentration of all micronutrients (viz. Zn: 0.05–0.18 ppm; Cu: in traces; Fe: 0–0.5 ppm; and Mn: 0–1.2 ppm) and most heavy metals (viz. Ni: 0–0.7 ppm; Pb: 0–0.15 ppm and Cd: in traces) in the surface/sub-surface irrigation waters were well within permissible limits. However Cr concentrations in irrigation waters of Alipur and Shahdara blocks were far above their maximum permissible limit of 1 ppm. It was further observed that Ni and Cr concentrations in the drinking waters of almost entire test area were far above maximum permissible levels of 0.02 and 0.01 ppm, respectively. Bio-available concentrations of several heavy metals (viz. Pb: 0.1–2 ppm; Cd: traces; Ni: 0.05–2 ppm and Cr: 0–0.4 ppm) in the study area soils were also observed to be well within the maximum permissible limits. However there were point Cu contaminations (5–10 ppm) in the sewage-sludge amended soils of vegetable growing areas near south Shahdara block. This was attributed to increased Cu availability due to oxidized acidic conditions generated by over-irrigation of agricultural lands. Available Mn concentrations in Kanjhawala, western Najafgarh and Alipur soils were also observed to be above maximum permissible limit of 10 ppm. This was observed to be mainly due to the geology (i.e. presence of Mn rich sedimentary rocks) and prevalence of reduced acidic conditions, due to paddy cultivation, in these areas. It was further observed that there is acute zinc (Zn) deficiency (< 0.6 ppm) in paddy growing soils of north Kanjhawala, Alipur and some parts of Najafgarh and Shahdara blocks due to extensive leaching of available Zn fractions to lower soil horizons. Similar available Zn deficiencies in high pH (8.5) soils of areas around Bamnoli village in E-Najafgarh block were also observed.
Keywords:trace metal pollution  micro-nutrient deficiency  soil-water degradation  priority area planning  spatial mapping
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号