首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial distribution and human contamination quantification of trace metals and phosphorus in the sediments of Chaohu Lake,a eutrophic shallow lake,China
Authors:Email author" target="_blank">Enfeng?LiuEmail author  Ji?Shen  Xiangdong?Yang  Enlou?Zhang
Institution:(1) Urban and Environmental Science College of Northeast Normal University, Changchun, Jilin, 130024, China;(2) Hefei Environmental Monitoring Center, Hefei, Anhui, 230031, China
Abstract:Distinguishing and quantifying anthropogenic trace metals and phosphorus accumulated in sediment is important for the protection of our aquatic ecosystems. Here, anthropogenic proportion and potential sources of trace metals and phosphorus in surface sediments of Chaohu Lake were evaluated based on the exhaustive geochemical data. The analysis shows that concentrations of major and trace metals, and phosphorus, displayed significant spatial diversity and almost all elements were over the pre-industrial background value, which should be related to the variations of sediment composition partially. Therefore, conservative element normalization was introduced and calculated enrichment factors (EFs) of the elements were referenced highlighting the human contamination. EFs of the major and trace metals, except Zn, Pb, and Cu, were all nearly 1.0, indicating the detrital origin. The EFs of Zn, Pb, Cu and phosphorus were 1.0–10.4, 1.0–3.8, 1.0–4.9, and 1.0–7.6, respectively, showing moderate to significant contamination. Higher EFs of Zn, Pb and Cu occurred in the mouth areas of Nanfei River and Zhegao River, and they decreased to the lake center in the northwest and northeast lake areas, respectively. We deduced that anthropogenic Zn, Pb, and Cu were mainly from urban and industrial point sources and the non-point sources of atmospheric deposition contributed little to their contamination. The EFs of phosphorus showed similar spatial degradation with that of Zn, Pb, and Cu. Moreover, higher EFs (>1) of phosphorus also occurred in other areas adjacent to the river mouths besides Nanfei River and Zhegao River. This indicated that the non-point agricultural source may also be responsible for the contamination of phosphorus in Chaohu Lake in addition to the urban sewage sources. Anthropogenic phosphorus was mainly concentrated in the speciation of NaOH-P, which had higher potential biological effects than the detrital proportion. Concentrations of Zn, Pb and Cu surpassed the threshold effect concentrations (TEC) of consensus-based sediment quality guidelines of freshwater ecosystems, especially in the contaminated northwest area of Chaohu Lake. This highlighted the contributions of anthropogenic contamination to the elevated potential biological effects of trace metals. Though there had been no obvious human contamination of Cr and Ni in Chaohu Lake, concentrations were all over the TECs, which may be due to higher background levels in the parent materials of soils and bedrocks in Chaohu Lake catchment.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号