首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash
Authors:Masami Iwamoto  Yuko Nakahira  Hideyuki Kimpara
Institution:1. Toyota Central R&2. D Labs., Inc., Aichi, Japaniwamoto@mosk.tytlabs.co.jp;4. D Labs., Inc., Aichi, Japan
Abstract:Objective: Active safety devices such as automatic emergency brake (AEB) and precrash seat belt have the potential to accomplish further reduction in the number of the fatalities due to automotive accidents. However, their effectiveness should be investigated by more accurate estimations of their interaction with human bodies. Computational human body models are suitable for investigation, especially considering muscular tone effects on occupant motions and injury outcomes. However, the conventional modeling approaches such as multibody models and detailed finite element (FE) models have advantages and disadvantages in computational costs and injury predictions considering muscular tone effects. The objective of this study is to develop and validate a human body FE model with whole body muscles, which can be used for the detailed investigation of interaction between human bodies and vehicular structures including some safety devices precrash and during a crash with relatively low computational costs.

Methods: In this study, we developed a human body FE model called THUMS (Total HUman Model for Safety) with a body size of 50th percentile adult male (AM50) and a sitting posture. The model has anatomical structures of bones, ligaments, muscles, brain, and internal organs. The total number of elements is 281,260, which would realize relatively low computational costs. Deformable material models were assigned to all body parts. The muscle–tendon complexes were modeled by truss elements with Hill-type muscle material and seat belt elements with tension-only material. The THUMS was validated against 35 series of cadaver or volunteer test data on frontal, lateral, and rear impacts. Model validations for 15 series of cadaver test data associated with frontal impacts are presented in this article. The THUMS with a vehicle sled model was applied to investigate effects of muscle activations on occupant kinematics and injury outcomes in specific frontal impact situations with AEB.

Results and Conclusions: In the validations using 5 series of cadaver test data, force–time curves predicted by the THUMS were quantitatively evaluated using correlation and analysis (CORA), which showed good or acceptable agreement with cadaver test data in most cases. The investigation of muscular effects showed that muscle activation levels and timing had significant effects on occupant kinematics and injury outcomes. Although further studies on accident injury reconstruction are needed, the THUMS has the potential for predictions of occupant kinematics and injury outcomes considering muscular tone effects with relatively low computational costs.
Keywords:finite elements  modeling  occupant kinematics  injury outcome  biofidelity  muscle activation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号