首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pipeline leakage detection and isolation: An integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN)
Institution:1. Masdar Institute for Science & Technology, United Arab Emirates;2. Non-linearity and Complexity Research Group, Aston University, UK;1. State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, PR China;2. School of Information Science and Engineering, Yanshan University, Qin Huang Dao, Hebei Province 066004, PR China;1. Tongji University, State Key Laboratory of Disaster Reduction in Civil Engineering, Siping 1239, Shanghai 200092, China;2. Tongji University, College of Civil Engineering, Siping 1239, Shanghai 200092, China
Abstract:Leakage diagnosis of hydrocarbon pipelines can prevent environmental and financial losses. This work proposes a novel method that not only detects the occurrence of a leakage fault, but also suggests its location and severity. The OLGA software is employed to provide the pipeline inlet pressure and outlet flow rates as the training data for the Fault Detection and Isolation (FDI) system. The FDI system is comprised of a Multi-Layer Perceptron Neural Network (MLPNN) classifier with various feature extraction methods including the statistical techniques, wavelet transform, and a fusion of both methods. Once different leakage scenarios are considered and the preprocessing methods are done, the proposed FDI system is applied to a 20-km pipeline in southern Iran (Goldkari-Binak pipeline) and a promising severity and location detectability (a correct classification rate of 92%) and a low False Alarm Rate (FAR) were achieved.
Keywords:Pipeline leakage  Fault detection and isolation (FDI) system  Multi-layer perceptron neural network (MLPNN) classifier  Wavelet transform  Statistical features  ABC"}  {"#name":"keyword"  "$":{"id":"kwrd0040"}  "$$":[{"#name":"text"  "_":"artificial bee colony  ANN"}  {"#name":"keyword"  "$":{"id":"kwrd0050"}  "$$":[{"#name":"text"  "_":"artificial neural network  CCR"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"correct classification rate  DWT"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"discrete wavelet transform  FAR"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"false alarm rate  FDI"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"fault detection and isolation  LMSE"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"least mean square error  LPG"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"liquefied petroleum gas  MLPNN"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"multi-layer perceptron neural network  MSE"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"mean square error  NPW"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"negative pressure wave  PNN"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"probabilistic neural network  RTTM"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"real time transient modeling  SCADA"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"supervisory control and data acquisition  STFT"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"short-time fourier transform  SVM"}  {"#name":"keyword"  "$":{"id":"kwrd0190"}  "$$":[{"#name":"text"  "_":"support vector machine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号