首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fugitive emissions in chemical processes: The assessment and prevention based on inherent and add-on approaches
Authors:Mimi H Hassim  Markku Hurme  Paul R Amyotte  Faisal I Khan
Institution:1. Dipartimento di Fisica e Chimica, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy;2. Dipartimento di Scienze Chimiche, Università di Messina, Viale Ferdinando Stagno d''Alcontres, 31, Vill. S. Agata, I-98166 Messina, Italy
Abstract:Fugitive emissions are among the major concerns of industrial process releases. The emissions cause problem to various aspects including the environment, health, and economic. Early evaluation of process hazards is beneficial because process can be made inherently benign at lower cost. This paper discusses two important aspects of fugitive emissions assessment during process design – the quantification and the prevention strategies.For the quantification part, three methods are presented for fugitive emissions estimation during the process design. They are tailored to data available in simple process flow diagram (PFD), detailed PFD, and piping & instrumentation diagram (PID). Such methods are needed as early emissions estimation allows production routes and process designs with lower emissions to be selected. The fugitive emissions estimation and methods to abatement are demonstrated on a benzene process case study. Valves are found to be the major emission source with 50% of fugitive emissions of process area in a base case of petrochemical process, in which no fugitive emission reductions are yet made. Pumps without mechanical seals come second with 30% and flanges with 8% of emissions. Inherently safer design keywords can be applied to prevent fugitive emissions in the process plants. Substitution is the most applicable keyword in fugitive emission reduction of existing plants.The emission rate calculations together with estimation of health risk give a sound background for the decision making on elimination of emissions at source through equipment and piping changes. The case study presented reveals that by substituting emission prone components by inherently low-leaking ones, the plant emissions can be reduced over 90% in practice. This is created mainly by replacing rising stem valves with ball valves, installing double mechanical pump seals or hermetic pumps and making changes in sampling and relief systems. Ideally by also changing flanges to welded connections, which is not viable for various reasons, the emissions could be reduced nearly to zero.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号