首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental study on water sealing of fire barriers and explosion venting of large-scale pipeline with low-concentration gas
Institution:1. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China;2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China;3. Fire and Explosion Prevention Research Branch, China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing, 400037, China;1. Swiss Process Safety Consulting GmbH, Schönenbuchstrasse 36, CH-4123, Allschwil, Switzerland;2. Covestro Deutschland AG, Kaiser-Wilhelm-Allee 101–103, D-51373, Leverkusen, Germany;1. ETSI Minas y Energía, Universidad Politécnica de Madrid, Madrid, Spain;2. Laboratorio Oficial JM de Madariaga, Universidad Politécnica de Madrid, Getafe, Spain
Abstract:Low-concentration gas transported in pipelines may lead to explosion accidents because gas with a concentration of less than 30% is prone to explode. To reduce the incidence of gas explosions, water sealing of fire barriers is implemented, and explosion venting devices are installed along the pipeline. To investigate their suppression effect on low-concentration gas explosion, experiments using methane–air premixed gas under different conditions were implemented on a DN500 pipeline test system. The effects of three types of explosion venting forms (rupture disc, asbestos board, and plastic film) on explosion overpressure and flame were compared and analysed. Results show that the rupture disc, asbestos board, and plastic film can achieve adequate explosion venting, causing the peak decay rates of explosion overpressure to reach 82.37%, 81.72%, and 90.79%, respectively. The foregoing indicates that the greater the static activation pressure of the explosion venting form, the higher the peak explosion overpressure at each measurement point. Moreover, the shorter the explosion flame duration, the greater the flame propagation velocity. The research results provide an essential theoretical foundation for the effective suppression of gas explosion accidents in the process of low-concentration gas transportation.
Keywords:Low-concentration mine gas  Fire barriers  Explosion venting  Explosion overpressure  Flame propagation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号