首页 | 本学科首页   官方微博 | 高级检索  
     检索      

储氢温度对加氢站泄漏爆炸事故的影响研究∗
引用本文:戴君豪,杨石刚,方秦,杨亚.储氢温度对加氢站泄漏爆炸事故的影响研究∗[J].防灾减灾工程学报,2024(2):293-300.
作者姓名:戴君豪  杨石刚  方秦  杨亚
作者单位:陆军工程大学国防工程学院, 江苏 南京 210007
基金项目:国家重点研发计划项目(2020TFB20103300)、江苏省自然科学基金项目(BK20180081)资助
摘    要:通过降低氢气的温度,可以实现更高密度的氢气储存,进而有效提升存储及运输的效率。为探究储氢温度对加氢站泄漏爆炸事故的影响规律,利用FLACS 软件对加氢站内长管拖车在不同储氢温度条件下(50、100、200 与300 K)发生泄漏后的氢气扩散和爆炸事故进行分析。研究结果表明:随着储氢温度的降低,高压氢气射流撞击防爆墙后可燃气云达到稳定的时间、扩散范围和冻伤区域均逐渐增大,而最大爆炸超压和爆炸危险距离则呈现出先增大后减小的趋势;储氢温度为50 K 时的轻微冻伤距离比储氢温度100 K 和200 K 时分别增加了近1 倍和7 倍,严重冻伤距离也最大;储氢温度为100 K 时泄漏气云爆炸产生的超压峰值比常温氢气爆炸提高了近3 倍,危险区域也最大;储氢温度为200 K 时,达到爆炸超压峰值的时间最快,储氢温度为50 K 时最慢。

关 键 词:氢气    低温    泄漏    爆炸    数值模拟
收稿时间:2023/3/17 0:00:00
修稿时间:2023/8/24 0:00:00

Study on the Influence of Hydrogen Storage Temperature on Leakageand Explosion Incidents at Hydrogen Refueling Stations
DAI Junhao,YANG Shigang,FANG Qin,YANG Ya.Study on the Influence of Hydrogen Storage Temperature on Leakageand Explosion Incidents at Hydrogen Refueling Stations[J].Journal of Disaster Prevent and Mitigation Eng,2024(2):293-300.
Authors:DAI Junhao  YANG Shigang  FANG Qin  YANG Ya
Institution:School of National Defense Engineering, Army Engineering University of PLA, Nanjing 210007 , China
Abstract:Lowering the temperature of hydrogen allows for higher density storage, effectively enhancingstorage and transportation efficiency. To investigate the influence of hydrogen storage temperatureon the risk of leakage and explosion incidents at hydrogen refueling stations, FLACS software wasused to analyze the diffusion and explosion of hydrogen following a leakage from a tube trailer withinthe station under different storage temperatures (50 K, 100 K, 200 K, and 300 K). The study resultsindicated that with the decrease in hydrogen storage temperature, the time for the combustible gascloud to stabilize, its diffusion range, and the cryogenic burn areas all increased after a high-pressurehydrogen jet hit the explosion-proof wall. Meanwhile, the maximum explosion overpressure and explosionhazard distance initially increased and then decreased. The distance for minor cryogenic burns at astorage temperature of 50 K was nearly twice that at 100 K and seven times that at 200 K, with severecryogenic burns covering the largest areas. The peak overpressure from cloud explosions at 100 K wasnearly triple that of a standard-temperature hydrogen explosion, with the largest hazard area. At a storagetemperature of 200 K, the time to reach peak explosion overpressure was the shortest, whereas at50 K, it was the longest.
Keywords:
点击此处可从《防灾减灾工程学报》浏览原始摘要信息
点击此处可从《防灾减灾工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号