首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pyrrolidinium Imides: Promising Ionic Liquids for Direct Capture of Elemental Mercury from Flue Gas
Authors:Lei Ji  Stephen W Thiel  Neville G Pinto
Institution:(1) Department of Chemical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
Abstract:A new approach to vapor phase elemental mercury capture has been explored; this approach exploits an ionic liquid coating layer to oxidize elemental mercury for subsequent immobilization by chelating ligands. The room temperature ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (P14) was selected for study based on its oxidation potential window, thermal stability, and low vapor pressure. Tests were also completed in which KMnO4 was added to P14 to form a new ionic liquid, P14–KMnO4, with a higher oxidation potential. In room-temperature bulk liquid phase capture experiments, 59% of the elemental mercury in the inlet gas was captured using P14 alone; mercury capture using P14–KMnO4 was quantitative. P14 and P14–KMnO4 coatings were successfully applied to mesoporous silica substrates and to silica substrates functionalized with mercury chelating ligands. The coating layers were found to be thermally stable up to 300°C. Fixed-bed tests of nonfunctionalized silica coated with P14 showed an elemental mercury uptake of 2.7 mg/g adsorbent at 160°C; at the same temperature, functionalized silica coated with P14–KMnO4 showed an elemental mercury capacity of at least 7.2 mg/g adsorbent, several times higher than that of activated carbon. The empty bed gas residence time in these tests was 0.04 s. A chelating adsorbent incorporating P14 in the coating layer, may be capable of simultaneous removal of elemental and oxidized mercury from coal combustion flue gases.
Keywords:Adsorption  Chelating adsorbent  Ionic liquid  Mercury  Oxidation  Flue gas
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号